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INTRODUCTION 

Computationally complex tasks, or "hard problems" for brevity, is a 
broad term that encompasses problems that require a significant number 
of resources to solve. Cryptography uses them by establishing an equiva-
lence between the security of a scheme and the intractability of a complex 
problem. Two hard problems have been widely used in public-key cryp-
tography: integer factorization and the discrete logarithm problem. In 
1994, Shor [1] showed that these classical complex problems can be easily 
solved on a large-scale quantum computer. Progress in the creation of 
quantum computers is becoming more and more tangible. This has 
prompted the cryptographic community, industry, and many standards or-
ganizations to plan to replace the public-key cryptography in widespread 
use today with a quantum-secure alternative: post-quantum cryptography. 

Quantum-resistant cryptosystems based on lattices, linear codes with 
error correction, multidimensional polynomial equations, one-sided func-
tions, on isogeny of elliptic curves, on non-commutative groups also ex-
ploit computationally complex tasks. 

OBJECTIVE AND TASKS 

The quantum security evaluations of the cryptosystems submitted to the 
NIST competition and pre-selected as candidates for post-quantum cryptog-
raphy are constantly being revised and refined. The latest results on the con-
struction of a polynomial quantum algorithm for solving the LWE problem 
with polynomial modulus-noise relations are exit. Despite the error found in 
the algorithm, new ideas regarding the application of the complex Gaussian 
function and the windowed quantum Fourier transform, in the author's opin-
ion, will be able to find new applications in quantum computing or develop 
new ways to solve the LWE problem. We would venture to assume that any 
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crypto-algorithm that has regularity properties in its structured data will be 
broken by a quantum computer. The properties of superposition and quan-
tum entanglement make it possible to perform calculations on all states of 
the qubit register simultaneously. This property models the full set of states 
of a classical computer. The presence of regularity in the computational data 
of the algorithm, for example, periodicity (frequency resonances) in alge-
braic structures (rings, groups, lattices, etc.) can potentially be filtered by 
some algorithm with a complexity less than Grover's algorithm. We propose 
to change the approach to the design of cryptosystems. We replace the con-
cept of a problem that is difficult to solve by a problem that has many equiv-
alent solutions without regularities, when all solutions are equally likely. In 
this case, quantum cryptanalysis is reduced to Grover's scheme with expo-
nential implementation complexity. We will set linear equations with respect 
to the unknowns for which we use the values of the logarithmic signatures. 
The number of equations for secret values of logarithmic signatures is less 
than their number. This leads to an incomplete system of linear equations 
with respect to unknowns and the impossibility of solving it in polynomial 
time. The only attack on a cryptosystem comes down to sorting and defining 
variables. The secrecy of the cryptosystem of the constructed problem with 
incompletely determined equations is determined by the power of many so-
lutions.  

MATERIALS AND METHODS 

The logarithmic signature in the algorithm is a basic cryptographic 
primitive with excellent cryptographic properties of non-linearity, non-
commutability, unidirectionality, and factorability by key. Below we will 
consider the basic information about cryptosystems with logarithmic sig-
natures. The representation of the logarithmic signature is associated with 
the positional numbering system. Let 𝐺is a finite group. The logarithmic 
signature 𝛼for a group 𝐺is a sequence of subsets 𝐴𝑖 ⊆ 𝐺of the form 𝛼 =
[𝐴1,  … ,  𝐴𝑠], such that for each element 𝑔 of the group 𝐺 there is only one 
factorization (∗) 𝑔 = 𝑎𝑞 ⋅ 𝑎2 ⋅   . . .  ⋅ 𝑎𝑠, where 𝑎𝑖 ∈ 𝐴𝑖for 𝑖 = 1,  . . . ,  𝑠. 

Sets 𝐴𝑖are called blocks. The size of the list of blocks is denoted by 𝑟𝑖: =
|𝐴𝑖|. For simplicity, we call the elements 𝐴𝑖 ∪   . . .  ∪ 𝐴𝑠logarithmic sig-
nature elements 𝛼. Under certain conditions, we consider the ordering of 
the elements of the block, then 𝑘𝑖 =  0,  . . . ,  𝑟𝑖 − 1we denote through 
𝑎𝑖𝑘𝑖

every (𝑘𝑖 + 1)-th element of the block 𝐴𝑖. A vector (𝑟1,  . . . ,  𝑟𝑠)is 

called a type 𝛼, a 

ℓ(𝛼) = ∑ 𝑟𝑖

𝑠

𝑖 = 1

−  
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with the length of the logarithmic signature. The set of logarithmic signa-
tures of the group is denoted by 𝛬(𝐺). The logarithmic signature is formed 
from subblocks. Each subblock contains vectors/strings that can be repre-
sented as numbers. A cryptogram is determined by the sum of vectors se-
lected by a key (number). The problem of the complexity of the computa-
tional security of the cipher lies in the difficulty of finding the decomposi-
tion of the cryptogram into vectors, if the correspondence between the po-
sitions of the vectors and its values is not known. From the definition, we 
obtain certain properties of logarithmic signatures. 

RESULTS 

Let 𝑛 ∈ ℕ For a cyclic group, (ℤ2𝑛 , +)a sequence of the form  𝛼 =
[[0, 2𝑛 − 1], [0, 2𝑛 − 2],   . . .  , [0,2], [0,1]]is a normalized logarithmic sig-

nature of the type (2, . . .  , 2). Computing the factorization of an element 
is equivalent to computing its binary mapping, in particular, if 𝑛 = 4, 9 =
1001has the factorization of 23 + 0 + +0 + 20. Consider the possibility 
of calculating the factorization of a group element for the specified loga-
rithmic signature and a certain element of the group. For example, an ex-
haustive search attack by finding all possible factorizations represented by 
the logarithmic signature 𝛼 = [𝐴1, . . ., 𝐴𝑠]of the group 𝐺, constitutes 
|𝐺| × (𝑠 − 1)group operations in the worst case. Such an iterative finds 
the correct factorization for any logarithmic signature, but is not possible 
in the general case. The example demonstrates that for certain logarithmic 
signatures it is easy to compute factorizations. For practical use in cryp-
tosystems, 𝑀𝑆𝑇it is necessary to define logarithmic signatures for which 
factorization is computationally infeasible, as well as signatures for which 
there are efficient decomposition algorithms. Mostly, the terms "simple" 
and "complex" logarithmic signatures are used to denote the difference be-
tween logarithmic signatures, for which it is computationally easy and dif-
ficult to obtain factorizations, respectively. 

CONCLUSIONS 

One of the first constructions of a logarithmic signature for finite 
groups of permutations was proposed for the construction of a symmetric 
cryptosystem. The basic property of this construction is the possibility of 
factorization by key. In 2002, Magliveras developed two public key cryp-
tosystems MST1 and MST2 [2]. Lempken used logarithmic signatures and 
random overlays to create a general MST3 encryption scheme. In this 
scheme, the public key consists of common logarithmic signatures and 
some random numbers, and the secret key consists of a random overlay 
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and a sandwich transform. The assumption of the undecidability of this 
scheme is the problem of group factorization on non-Abelian groups 
[3,4,5]. Also, motivated by attacks, Svaba and van Trung reviewed an ex-
tended version of the general scheme called eMST3 cryptosystems [6]. 
Further development of the MST3 cryptosystem was proposed on the basis 
of high-order groups of generalized Suzuki groups, small Ree groups, 
three parametric groups, groups of automorphisms of the Suzuki func-
tional field and automorphisms of the Ree functional field [7]. 

The advantage of logarithmic signatures is that the calculation of ci-
phertexts is implemented by a simple addition operation with bitwise 
XOR. The disadvantage is the large size of signature - logarithmic arrays 
of arrays to ensure a high level of secrecy. A promising direction is the use 
of logarithmic signatures as a basic crypto primitive, which implements 
keyless encryption and factorization by the logarithmic signature key. 
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