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INTRODUCTION 

The study of linear time-varying systems (LTV) is an integral part of 
the theory of automatic control, the development of which is caused by the 
need to solve a number of technical problems, in particular, the design of 
aircraft motion control systems. In order to determine the control law (CL), 
which ensures the given parameters of the LTV, various variants of the 
mathematical apparatus have been used, for example, differential inequal-
ities and parametric Lyapunov equations, predictive control models, dif-
ferential equations with constant coefficients around a certain time. 

Analysis of stability of LTV compared to stationary systems is much 
more complicated for several reasons. First, another formulation of the 
concept of stability, secondly, there is no obvious connection between the 
stability of the LTV and the eigenvalues of the matrix of the equations 
system. In addition, the result of the analysis largely depends on the state 
transition matrices, the possibility of determining which is obvious not al-
ways [1]. 

The construction of Lyapunov function (LF) for LTV is related to the 
solution of a scalar differential equation, which contains both improper and 
double integrals [2]. For scalar LTV, a method of LF construction based on 
the use of the integral of the system parameter with a weight function on a 
finite interval is proposed. Conditions are imposed on the weight function 
so that LF is positively defined and uniformly bounded, and its time deriv-
ative according to the LTV equations is negatively defined, which is a cri-
terion of stability. 

New methods of LF construction for a certain class of LTV are pro-
posed [3], Lyapunov's inverse theorem for asymptotic stability is proved. 
Its necessary and sufficient conditions are obtained based on the proved 
Lyapunov's differential inequalities [4]. 

With the use of Riccatti equations and matrix inequalities, an algo-
rithm for assessing the stability of LTV, whose disturbances are described 
by quadratic constraints, was developed [5]. 

Obtaining the specified technical indicators of the LTV by using the 
stability theory is shown on the examples of spacecraft orientation systems 
[6, 7] and control of disturbed aircraft movement in the pitch plane [8]. 
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The effectiveness of using Lyapunov's differential inequalities for the 
construction of the algorithm for the calculation of CL is shown, which 
provides a compromise between the requirements of speed and accuracy 
of stabilization, the properties of the transient process are established, and 
the assumption of a limited range of coefficient changes is removed. 

The concept of building a dynamic controller in LTV feedback, when 
its parameters are known only approximately, has been developed [9]. The 
sufficient and necessary conditions for the possibility of solving the prob-
lem in the form of matrix inequalities are obtained, based on which the 
parameters of the controller are determined. 

In the control system of the rocket rotational movement the model pa-
rameters deviation from the time-varying nominal values can amount to 
ten or more percent, therefore, to increase the efficiency of using the 
method of frozen coefficients, an algorithm for their refinement by using 
the data of measuring devices on the current values of part of the state 
vector coordinates is proposed [10]. Algorithms for specifying LTV pa-
rameters for various types of disturbances are also described in works [11-
14]. The analysis of the available sources shows that due attention is not 
paid to the issues of developing methodical support of applied value for 
the study of LTV in the available sources. 

OBJECTIVE AND TASKS 

The goal is to develop methodological support for constructing an al-
gorithm for determining the equivalent stationary approximation, that is, 
of the transfer function (TF), which is equivalent to the LTV at the selected 
time interval. 

The task is to show the possibility of obtaining a second-order TF, 
which is equivalent to the LTV on a certain trajectory section, using the 
example of the system for controlling the rotational motion of a rocket in 
one plane. 

MATERIALS AND METHODS 

The mathematical model of LTV is a system of differential equations, 
the parameters of which have a constant and time-varying component. 
From the point of view such data as the duration of the transient process 
during disturbance compensation, stability margin, frequency response, 
and others TF (the ratio of Laplace transforms of the output signal to the 
input signal) gives enough information about dynamic characteristics of 
LTV on the chosen time interval. To obtain the TF, the system of differen-
tial equations is transformed according to Laplace with zero initial values. 
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Representation of the variable component of the parameters of the 
LTV model by the sum of exponential functions has advantages from the 
point of view of the level of complexity of the transition from differential 
equations to TF. This follows from the well-known properties of the La-
place transform of the time function into a function of the complex variable 
s, which is called the image: 
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then based on (1-3) the Laplace transform of individual components of the 
LTV equation according to the image delay theorem will be as follows: 
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The indicators ri, ri in (2, 3) are determined by a well-known algo-
rithm as the roots of the characteristic equation 
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f(t) – the variable component of the model parameter, t1…t12 – points on 
the selected time interval of LTV operation. 

The solution of system (4) can be obtained, including for cases of rank 
mr less than 12, by the lsolve(mr,G) procedure, which uses the LU decom-
position method. 

The coefficients of exponential functions, for example, in equation (2) 
are determined from the system: 
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The accuracy estimation of approximation by exponential functions is 

given in the works of the Latvian authors Kulikov and Timohovich. 
The possibility of obtaining an equivalent stationary approximation of 

LTV that is TF, for a certain time range will be shown on the example of a 
control system for the rocket rotational movement in one plane, the equa-
tion of which at the initial stage of development can be taken in the form: 
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where  
, , , ,g g    

 
are actual and specified yaw angle, as well as their time derivatives; 
m is disruptive acceleration; 

,a a   
are the constant components of the model parameters; 
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',k k   
are the CL coefficients; 

,, ,i i i ir r C C     
are the exponents and coefficients of the exponential functions of approx-
imation of the corresponding variable component of the model parameters. 

As it’s known, the principle of superposition is valid for linear sys-

tems, according to which the result of the action of the input signal g(t) 
or m(t) can be determined independently. To build an algorithm for deter-
mining the equivalent stationary approximation of the LTV at a certain 
time interval from two possible TFs 
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in this work is chosen TF wz(s), which is determined by Laplace transfor-
mation of equation (6) at zero initial values. 

To obtain the TF, the differential equation (6) is transformed into an 

algebraic one with respect to the images of the actual (s) and specified 

g(s) value of the yaw angle: 
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Equation (8) makes it possible to obtain the TF wz(s) in the form of a 

fractional-rational function of a complex-type argument s: 
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Iterations are necessary to obtain the TF wz(s), since the image of the 

output signal (s) is included in the last three terms of the equation (10) 
left part, which are a consequence of the time instability of the model pa-
rameters on the trajectory’s selected section and considered as a disturb-
ance in this work. 

To obtain the first approximation of the image of the output signal 

0(s) necessary for the iterations, the image of the signal at the input of the 

CS g(s) is required, the stationary approximation of the LTV does not 
depend on the choice of which. 

From the point of view of the complexity level of the algorithm, it can 

be taken as constant − single signal with accuracy up to the factor d, that 

is g(t)=d∙1(t). Then according to (1) g(s)=d/s. 
When the disturbance is not taken into account, then in equation (8) 

terms with coefficients Ci, Ci are assumed to be zero and the first approx-
imation of the TF wz(s) will have the form 
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and the first approximation of the output signal image 
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while the TF wz(s) (11) numerator 
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according to equation (8) and the relations for the terms of its right-hand 
side: 
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The coefficients CL and, which are included in (6, 8-12), are deter-

mined for the selected interval of the trajectory based on the given prelim-

inary values of the stability margin 1  on the roots plane of the character-
istic polynomial (CHP) and the frequency f1 of oscillations of the missile 
body in the transient process of disturbance compensation: 
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The relations (13) follow from the fact that the roots of the denomina-

tor Q0 of the TF (11) first approximation according to the given values 1 
and f1 are as follows: 

 

1,2 1 12s j f= −   
, 

where j2 = -1. 
Iterations to determine the denominator Q(s) TF wz(s) that is charac-

teristic polynomial (CHP) can be carried out according to the scheme: 
 

6

0 1
1 1

1
( ) ( ) ( )

( )
k i k i

k i

Q s Q s C s r
s

 − 
− =


= −   − −

 


 
6

1
1

( )i k i
i

k C s r  − 
=

−   − −
 

                          (14) 
( )

( ) ; ( ) ( ) ( )
( )

zk k g zk
k

P s
w s s s w s

Q s
=  =   =

 
( ) / ; 1,zkw s d s k n=  =

, 

6
'

1
1

( ) ( ) ;i k i i
i

k C s r s r  −  
=


−   −  − 






Challenges and Issues of Modern Science, 2 (2024) 

272 

where the index k is the number of the iteration step, Q0(s) is the denomi-
nator of the TF (13), in which the disturbance is not taken into account. 

At each step of the iteration, an array N of l  rows and two columns is 
created, in which the values of CHP Qk(s) are entered, where the argument 
s varies over the range of characteristic frequencies of the control system. 

By processing this array with the use of method of least squares (l 
equations with three unknown coefficients of the CHP), the current coef-

ficients q2k, q1k, q0k of the CHP and, accordingly, the values 2k, f2k are de-
termined. 

The number of iteration steps n depends on the results of checking the 
achievement of the specified value of the difference of the modules se-
lected to control the convergence of the values at the current and previous 

step, for example 2k - 2k-1, or  f2k - f2k-1. 

The result of the performed iterations is the indicator 2 of the stability 
margin on the CHP roots plane and TF (7) of the closed system 
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The convergence of the iterations has been checked on the example of 

the rotary motion control system in the yaw plane of the space rocket first 
stage, with the data in the table 1. 

Table 1 – Data for calculation coefficients of CL 

a  
a  1  1f  

s-2 s-1 Hz 

0.849 -0.331 
1.2 

0.3 
0.5 

RESULTS 

The advantage of representing the variable components of the model 
parameters as a sum of exponential functions is a simple transition from 
the control system differential equations (6) to their Laplace transfor-
mation, and the disadvantage is that iterations are necessary to obtain the 

TF. This can be seen from equation (8), in which the image (s) of the 
system output signal is included in the terms of the left part of the equation, 
which are due to the instability of the parameters. 

For the selected data example, three iterations were enough so that the 

indicator 2 of the stability margin of the missile rotational motion control 
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system, taking into account the instability of the model parameters, was 
calculated with an error of no more than 0.01 s-1. 

The results of the conducted experiments show the possibility of con-
structing an algorithm for calculating the stationary approximation of the 
LTV on the selected trajectory section by obtaining the equivalent TF using 
the Laplace transformation of the time-varying component of the models 
parameter, given by the sum of exponential functions. 

CONCLUSIONS 

The scientific novelty of the work consists in the development of a 
methodology for determining the stationary approximation of the LTV by 
Laplace transformation of the variable component of the mathematical 
model parameters, represented by the sum of exponential functions. 

The practical significance of the obtained results is the expansion of 
the methodological base for designing systems with time-varying param-
eters. 
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