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Evaluation of dynamic characteristics of a linear time-
varying system

Volt Avdieiev

Purpose. The development of methodological support for the construction of an algorithm for calculating the
coefficients of the transfer function of the second order link, which is equivalent to a time-varying system in the
selected time interval from the point of view of the smallest average value of the modulus of the difference of
dimensionless state vectors. Design / Method / Approach. Mathematical models of a time-varying system and
a second-order link are used, along with a criterion that determines the transfer function coefficients. The
Levenberg-Marquardt algorithm finds the minimum, and the Runge-Kutta algorithm solves differential equations.
The output of the time-varying system is obtained numerically, while the second-order link’s output is an analytical
solution. Findings. Based on the calculations carried out for the selected data example, the possibility of
determining the transfer function coefficients of the second-order link is shown, which, from the point of view of
the smallest average value of the modulus of the difference of dimensionless state vectors on the selected time
interval, is equivalent to time-varying system. Theoretical Implications. It is possible to have an estimate of the
margin of stability, type and duration of the transient process during the selected time interval of the system
operation by using the mathematical apparatus of linear stationary systems. Practical Implications. It leads to
the expansion of the methodological base of analysis and synthesis of linear time-varying systems. Originality /
Value. It lies in the using the Levenberg-Marquardt method to determine the coefficients of the transfer function
which is equivalent to the equations of a time-varying system at a certain time interval from the point of view of
the selected criterion. Research Limitations / Future Research. The algorithm was developed for the rocket
rotational control system in one plane. The transfer function coefficients depend on constraints and the test signal
within 15%. Further research includes an equivalent stationary approximation considering actuator inertia and
center of mass disturbances. Article Type. Conceptual.
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MeTta. Po3pobka meTogmyHOro 3abesneyeHHs MoOydoBM anropuTMy po3paxyHKy KoediuieHTiB nepenartHoi
YHKLIT NaHK1 Apyroro NOpsiAKy, O € EKBiBaNEeHTHOK YaCOBO-3MiHHI cucTeMi Ha o6paHoOMy YacoBOMY iHTepBarni
3 TOYKM 30pYy HANMEHLLOrO CepeaHbOro 3Ha4YeHHs MOAYns pisHuLi 6e3po3mipHux BekTopiB cTaHy. insanH / Metop,
/ Nigxig. BUKOPMCTOBYOTHCS MaTeMaTUYHi MOAENI YacOBO-3MiHHOI CUCTEMM Ta NaHKU OPYroro nopsiaky, a Takox
KpuTepin Ans BU3Ha4YeHHs koediuieHTiB nepegartHoi dyHKuii. MiHimisauisa 3gincHioeTsca metogom JleBeHbepra-
Mapkyaparta, po3B’a3aHHsa AndepeHuianbHuX piBHAHb — MeTogoM PyHre-KyTTa. BuxigHui curHan 4acoBo-3MiHHOI
CMCTEMW OTPUMYETLCH YNCENBHO, a NaHKW ApYroro nopagky — aHanitnyHo. PesynbraTu. Ha nigcrasi pospaxyHkis,
npoBegeHux Ans obpaHoro npuknagy AaHuX, NPOAEMOHCTPOBAHO MOXIUBICTb BU3HAYEHHS KoedilieHTiB
nepegaTtHol YHKLiT NaHK1 Opyroro MopsaKy, sika 3 TOYKM 30pY HaNMMEHLLOro cepefHbOro 3HayeHHs Moayns
pisHMUi 6e3po3MipHMX BEKTOPIB CTaHy Ha obpaHOMYy 4acoBOMY iHTepBani € eKBiBaneHTHOK 4YaCcOBO-3MiHHIl
cuctemi. TeopeTM4He 3Ha4eHHA. 3a JOMOMOIOK MaTemMaTU4YHOro anapaTty MiHIAHUX CTauioOHapHUX CUCTEM
MOXIMBO OLHUTM 3anac CTIAKOCTi, TN Ta TpMBanicTb MEepPexiAHOro NpoLecy NpOTsiroM 06paHOro 4acoBOro
iHTepBany ekcnnyaradii cuctemu. MpakTuvHe 3Ha4YeHHA. Lie cnpusie po3wmpeHHio MeToam4yHoi 6asum aHanisy Ta
CVHTE3Y NiHINHMX YacoBO-3MiHHMX cucTem. OpuriHanbHicTb / LliHHicTb. BoHa nonsrae y 3actocyBaHHi meToay
JleBeHbepra-MapkyapaTa ons BU3HavyeHHs koedilieHTiB nepeaaTHol yHKLIi, WO € eKBiBaneHTHOK PIBHAHHSAM
4acoBO-3MiHHOI CMCTEMM Ha MEBHOMY 4acOBOMY iHTepBani 3 Todku 3opy obpaHoro kputepito. OB6mexeHHs
pocnigpkeHHs /| ManbyTHi gocnigkeHHA. Anroputm po3pobrneHo Ansi CUCTEMU KepyBaHHS 06epTaHHSIM pakeTu
B OAHIM nnowwmHi. KoediuieHTn nepepatHoi cyHKUii 3anexaTb Big obmexeHb i TectoBoro curHany (ao 15%).
Mopanbli AocnifxeHHs OXONMIoTb eKBIBaNeHTHY CTauioHapHY anpoKcumaliio 3 ypaxyBaHHSIM iHepUiNHOCTI
BMKOHABYOro NpUCTPOIO Ta 30ypeHb LeHTpy Mac. Tun ctarTi. KoHuenTyanbHa.
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The analysis of dynamic characteristics of linear time-varying
(LTV) systems compared to stationary systems is significantly more
complex due to several fundamental reasons. Firstly, the classical
concept of stability requires reformulation when applied to LTV
systems. Unlike time-invariant systems, where stability can be di-
rectly assessed through eigenvalues of the system matrix, in LTV
systems, there is no direct correlation between stability properties
and the eigenvalues of the coefficient matrix of the system of equa-
tions. This complicates the derivation of general stability criteria
and necessitates alternative analytical approaches.

To determine an appropriate control law that ensures the de-
sired dynamic characteristics of an LTV system, various mathemat-
ical approaches have been explored. These include differential ine-
qualities, parametric Lyapunov equations, predictive control mod-
els, and differential equations with constant coefficients approxi-
mated around specific time intervals. Each of these methods offers
advantages and limitations depending on the class of LTV systems
under consideration.

The construction of a Lyapunov function (LF) for LTV systems
is particularly challenging, as it requires solving a scalar differential
equation that incorporates both improper and double integrals
(Zhou et al., 2020). For scalar LTV systems, an LF construction
method based on the integral of system parameters with a weight
function over a finite time interval has been proposed. Specific con-
straints are imposed on the weight function to ensure that the Lya-
punov function remains positively defined and uniformly bounded.
Furthermore, its time derivative, when evaluated according to the
governing equations of the LTV system, must be negatively de-
fined—fulfilling a necessary stability criterion.

Several novel methods for constructing LF for specific classes
of LTV systems have been introduced (Kawano, 2020), including a
proof of Lyapunov’s inverse theorem for asymptotic stability. Nec-
essary and sufficient conditions for stability have been established
based on differential inequalities derived from Lyapunov’s ap-
proach (Zhou, 2016). Additionally, stability assessment algorithms
employing Riccati equations and matrix inequalities have been de-
veloped to handle LTV systems subjected to disturbances con-
strained by quadratic bounds (Seiler et al., 2019).

The application of stability theory to achieve predefined tech-
nical performance characteristics in LTV systems has been demon-
strated in various practical domains. Examples include spacecraft
orientation control (Zhou, 2021; Mullhaupt et al., 2007) and the reg-
ulation of perturbed aircraft motion in pitch dynamics (Xie et al.,
2022). Despite these advancements, an analysis of the available lit-
erature reveals that insufficient attention has been dedicated to the
development of methodological frameworks with direct applied
value for LTV system analysis and synthesis.

In classical control theory, the transfer function (TF) is used to
determine the dynamic characteristics of a linear sta-tionary system
and is defined as the ratio of the Laplace transform of the system’s
output signal to the Laplace transform of its input signal. The deter-
mination of the TF coefficients for a second-order link that is equiv-
alent to an LTV system over a finite time interval requires approxi-
mating the time-dependent coefficients of the governing differential
equations. One approach involves representing these variable com-
ponents as exponential functions (Avdieiev, 2024a), whose products
with the system state variables and their derivatives are subse-
quently transformed via Laplace methods. Iterative refinement of
these transformations ensures the accuracy of the resulting TF coef-
ficients.

To further simplify the computational algorithm for determin-
ing TF coefficients, as compared to the methodology presented in
Avdieiev (2024a), the present study aims to develop a methodolog-
ical framework for constructing an algorithm that minimizes the av-
erage absolute deviation between the dimensionless output state
vectors of the LTV system and its second-order link approximation.
This optimization is performed using the Levenberg-Marquardt al-
gorithm, which provides a robust numerical approach to achieving
the desired coefficient accuracy.

Addressing this problem is particularly relevant, as the existing
literature does not sufficiently cover the methodological support
necessary for the practical analysis and synthesis of LTV systems.
By refining the methodological foundations of transfer function ap-
proximation, this study contributes to the broader effort of improv-
ing control strategies for complex time-varying systems.

Mathematical Framework

The solution to the named task is shown on the example of a
time-varying system for controlling the rotational movement of a
rocket in one plane.

Without taking into account the executive device inertia, the
disturbed movement of the mass center, fuel fluctuations and the
body final stiffness, the system equation is as follows:

il
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a®) = [qo(t) ql(t)]‘ M
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f(e) = [Po(t) LAGESNGE l/}g (t)].

In equation (1) ¥, v are the rotation angle of the missile body
and its time derivative; yg(?) is the input signal depending on time,
that means the specified value of the missile body rotation angle;
qo(?), q1(9), po(?), pi(?) are variable coefficients that depends on the
rocket inertial mass and aerodynamic characteristics, altitude and
flight speed.

The solution of system (1) can be obtained numerically, for ex-
ample, by the Runge-Kutta method, its results are presented in a ta-
ble, denote them 1, (t) and v, (t). They will be used in the iterative
process of determining TF coefficients using the Levenberg-Mar-
quardt method.

As you know, TF is the Laplace transform ratio of the output
signal of the system y(t)

L@} = [ p(®) - e~ - dt = 9(s)

to the Laplace transform of the input signal yg(s), i.e.
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where L is the designation of the Laplace transform operator, s is a
variable of complex type.

To obtain the first approximation of the TF based on equation
(1), the coefficients go, g1, po, p1 are assumed to be constant and
equal, for example, to their value at the midpoint of the selected time
interval. This makes it possible to transform these equations accord-
ing to Laplace and determine the TF of the second-order link in the
form:

Y(s) _  pistpo P1-S+Do @)
Pg(s)  s?-pys+qe  sP-2as+a?+p?

w(s) =

where a, 3 are the real and imaginary part of the roots of the equa-
tion s%- pr:s+qo=0.

As can be seen from (2), the search for a TF equivalent to a
time-varying system should be carried out in the four-dimensional
space of coefficients a, f3, po, p1.

To reduce the duration of the iterative process of finding the
TF coefficients of the second-order equivalent link the solution of
its differential equation

Yp-2a-yp+ (@ +p?) -y =
=p1 - Pg(0) +po - Py (D), 3)

which follows from the TF (2), the initial conditions and the input
signal y¢(7), must be obtained analytically.

In this work, two variants of input signals are considered:

— in the form of the parabola equation with a vertex in the cen-
ter of a certain time interval, for example 0...2t,, and equal to zero
at its edges

Ygi(t) =ay - t> + by -t +cy; 4)

—in the form of two equations that specify the program for
turning the rocket body to a given angle during the 2¢, time interval

lpgz(t) =
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where the coefficients depend on the given value of the parabola at
the top in the center of the interval, the magnitude of the angle of
rotation and the desired transition process profile.

For the case of zero initial values and the signal yg1 (4) at the
input of the system, the solution of equation (3)

Y(a,B,po,p1,t) =
=e® . (A.-cosBt+Ag-sinft)+
+A-t2+B-t+C, (6)
where
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For the case of zero initial values and signal yg2 (5) at the input
of the system, the solution of equation (3) can be written in a form
like (6), but with other coefficients in its terms.

In the first half of a certain trajectory section
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In the second half of a certain trajectory section
Y(a,B,po,p1,t) =
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The equivalence of a link with a TF of type (2) to a time-vary-
ing system is established by comparing their transient processes at
the selected test signals yg1, We2 (4, 5). The coefficients of the link
are found by minimizing the criterion, the value of which quantita-
tively characterizes the results of the transient processes compari-
son.

The work considers variants of criteria from the point of view
of local extrema. Part of them is described in (Avdiciev, 2024b).

Criterion of the minimum sum of the squares of the difference
in the angles of missile body rotation

Q1(r) =X, (Y. t) — ¥, (t)]% ©)
ti = l . At,
2t,
==L

where At is the integration step of the system of equations (1),

r = [a,B,p0,p1]"

is the vector of TF coefficients introduced to shorten the record.
Criterion of the minimum square of the difference of the angles
of the state vector direction
tb(r,tl)
Y(r, tl)

arctg

Q:(r) = (10)

wH (tl)

Criterion of the minimum square of the difference of the mod-
ules of the dimensionless state vector
Q3(r) = XL [m(r, t;) — m,(t)]?, 11

where

m(0) = W0l + 00l

ma(6) = [0 + ) e

Wm, Wmt are the angle and angular speed of the body rotation, used
for the transition to dimensionless quantities.

Criterion of the minimum value of the area difference under
the curves of transient processes

Qa(r) = At - |XiL1 [ (r, t) — Y, ()] (12)

The criterion for the minimum of the average value of the dif-
ference between the state vectors

Qs(r) = 13)

n \/[[w(r.m—wm] + [¢<r.r,»)—¢u<ti>]]
lljm]z wmt]z

The criterion of the minimum value of the difference in the
area of phase portraits

Qs(M) = |Sp(r) =S4, (14)

where
Sp(r) = [, 6) - dip(r, £) =
= [27(r, 002 - dt = At - Ty, £)?,

Su = At Xy Py (:)?
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From the point of view of the local extrema location, the prop-
erties of criteria (9-14) were established experimentally using the
Levenberg-Marquardt method on the example of the data in the ta-
ble 1 with test signals wg1, wga (4, 5).

As the conducted experiments have shown, after studying the
results of using a certain criterion for the purpose of quantitative
analysis of the equivalence level of equations (1) and TF (2) de-
pending on time, it may be appropriate to construct a difference
phase portrait in coordinates

P = P P — Y.

Table 1 — dependence of TF coefficients on time

(developed by author)

t 9o Do D

s 57 s

0 3.31 -4.53 -1.87
16 4.56 -5.52 -2.28
32 7.14 -7.51 -3.10

Based on the location of local extrema in the space of TF co-
efficients, that is, coordinates of vector r, and the minimum values
of the criterion, option Qs (13) is preferred. The results of its use are
in the table 2.

Table 2 — TF coefficients before and after minimizing
the criterion Qs(r) (developed by author)

Test signal ~ Definition o B Po )2 Os
point

Vel primary —120 1.88 —-585 -24 0.075
final -123  0.57 -220 -37 0.046

Ve primary —1.20 1.88 —-585 -24 0.340
final -1.02  0.63 -1.60 -37 0.091

Based on the final results of determining the TF coefficients
(2) in the case of the test signal g1 (table 2), we will obtain an esti-
mate of the following dynamic characteristics of the time-varying
system in the relative time range 0...32 s (table 1): stability margin
on the roots plane of the characteristic polynomial 1.2 s/, the dura-
tion of the transient process is 2.4 s, the frequency of the oscillatory
component of the transient process is 0.09 Hz, the amplitude-phase
dependence on the circular frequency ®

References
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w(w) = 2
where 2=~ 1.

The named estimates of dynamic characteristics can be used to
make technical decisions in the process of designing systems with
time-varying parameters.

Conclusions

Based on the calculations performed for the selected data ex-
ample, this study demonstrates the feasibility of determining the
transfer function (TF) coefficients for a second-order link. From the
perspective of minimizing the average absolute deviation between
the dimensionless state vectors over a selected time interval, the ob-
tained TF is equivalent to the given linear time-varying (LTV) sys-
tem.

The application of the transfer function approach enables the
estimation of key dynamic characteristics, including the stability
margin in the root plane of the characteristic polynomial, the nature
and duration of transient processes, as well as the system's gain as a
function of input signal frequency. This allows for a comprehensive
analysis of amplitude-frequency and phase-frequency dependen-
cies, which are crucial for assessing system behavior under various
operating conditions.

A novel aspect of this study is the use of the Levenberg-Mar-
quardt method to determine the TF coefficients, ensuring their
equivalence to the governing equations of an LTV system over a
specified time interval based on the selected optimization criterion.
This approach enhances the accuracy of TF-based approximations
and provides a refined tool for analyzing time-varying dynamic sys-
tems.

The practical significance of this work lies in expanding the
methodological framework for the analysis and synthesis of LTV
systems. The proposed methodology offers a structured approach
for approximating LTV system dynamics using TF representations,
contributing to the development of more effective modeling and
control strategies.

A potential direction for future research is the determination of
an equivalent stationary approximation for the LTV system govern-
ing the rocket’s rotational motion. This would involve accounting
for the inertia of the actuator and the effects of disturbed motion of
the center of mass, further refining the accuracy of system modeling
and control.
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