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Evaluation of dynamic characteristics of a linear time-

varying system 

Volt Avdieiev  

Purpose. The development of methodological support for the construction of an algorithm for calculating the 
coefficients of the transfer function of the second order link, which is equivalent to a time-varying system in the 
selected time interval from the point of view of the smallest average value of the modulus of the difference of 
dimensionless state vectors. Design / Method / Approach. Mathematical models of a time-varying system and 
a second-order link are used, along with a criterion that determines the transfer function coefficients. The 
Levenberg-Marquardt algorithm finds the minimum, and the Runge-Kutta algorithm solves differential equations. 
The output of the time-varying system is obtained numerically, while the second-order link’s output is an analytical 
solution. Findings. Based on the calculations carried out for the selected data example, the possibility of 
determining the transfer function coefficients of the second-order link is shown, which, from the point of view of 
the smallest average value of the modulus of the difference of dimensionless state vectors on the selected time 
interval, is equivalent to time-varying system. Theoretical Implications. It is possible to have an estimate of the 
margin of stability, type and duration of the transient process during the selected time interval of the system 
operation by using the mathematical apparatus of linear stationary systems. Practical Implications. It leads to 
the expansion of the methodological base of analysis and synthesis of linear time-varying systems. Originality / 
Value. It lies in the using the Levenberg-Marquardt method to determine the coefficients of the transfer function 
which is equivalent to the equations of a time-varying system at a certain time interval from the point of view of 
the selected criterion. Research Limitations / Future Research. The algorithm was developed for the rocket 
rotational control system in one plane. The transfer function coefficients depend on constraints and the test signal 
within 15%. Further research includes an equivalent stationary approximation considering actuator inertia and 
center of mass disturbances. Article Type. Conceptual. 
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Мета. Розробка методичного забезпечення побудови алгоритму розрахунку коефіцієнтів передатної 
функції ланки другого порядку, що є еквівалентною часово-змінній системі на обраному часовому інтервалі 
з точки зору найменшого середнього значення модуля різниці безрозмірних векторів стану. Дизайн / Метод 
/ Підхід. Використовуються математичні моделі часово-змінної системи та ланки другого порядку, а також 
критерій для визначення коефіцієнтів передатної функції. Мінімізація здійснюється методом Левенберга-
Маркуардта, розв’язання диференціальних рівнянь – методом Рунге-Кутта. Вихідний сигнал часово-змінної 
системи отримується чисельно, а ланки другого порядку – аналітично. Результати. На підставі розрахунків, 
проведених для обраного прикладу даних, продемонстровано можливість визначення коефіцієнтів 
передатної функції ланки другого порядку, яка з точки зору найменшого середнього значення модуля 
різниці безрозмірних векторів стану на обраному часовому інтервалі є еквівалентною часово-змінній 
системі. Теоретичне значення. За допомогою математичного апарату лінійних стаціонарних систем 
можливо оцінити запас стійкості, тип та тривалість перехідного процесу протягом обраного часового 
інтервалу експлуатації системи. Практичне значення. Це сприяє розширенню методичної бази аналізу та 
синтезу лінійних часово-змінних систем. Оригінальність / Цінність. Вона полягає у застосуванні методу 
Левенберга-Маркуардта для визначення коефіцієнтів передатної функції, що є еквівалентною рівнянням 
часово-змінної системи на певному часовому інтервалі з точки зору обраного критерію. Обмеження 
дослідження / Майбутні дослідження. Алгоритм розроблено для системи керування обертанням ракети 
в одній площині. Коефіцієнти передатної функції залежать від обмежень і тестового сигналу (до 15%). 
Подальші дослідження охоплюють еквівалентну стаціонарну апроксимацію з урахуванням інерційності 
виконавчого пристрою та збурень центру мас. Тип статті. Концептуальна. 

Ключові слова: 

нестаціонарна система управління, передатна функція, критерій еквівалентності, алгоритм Левенберга-
Марквардта 

Contributor Details: 

Volt Avdieiev, Dr. Sc., Prof., Oles Honchar Dnipro National University: Dnipro, UA, voltavde@i.ua 
 
 

https://cims.fti.dp.ua/j/article/view/250
https://purl.org/cims/4.250
https://cims.fti.dp.ua/j
https://doi.org/10.15421/cims.4.250
https://orcid.org/0000-0002-9986-7637


70 Challenges and Issues of Modern Science 
 2025, Vol. 4, No. 1 

The analysis of dynamic characteristics of linear time-varying 
(LTV) systems compared to stationary systems is significantly more 
complex due to several fundamental reasons. Firstly, the classical 
concept of stability requires reformulation when applied to LTV 
systems. Unlike time-invariant systems, where stability can be di-
rectly assessed through eigenvalues of the system matrix, in LTV 
systems, there is no direct correlation between stability properties 
and the eigenvalues of the coefficient matrix of the system of equa-
tions. This complicates the derivation of general stability criteria 
and necessitates alternative analytical approaches. 

To determine an appropriate control law that ensures the de-
sired dynamic characteristics of an LTV system, various mathemat-
ical approaches have been explored. These include differential ine-
qualities, parametric Lyapunov equations, predictive control mod-
els, and differential equations with constant coefficients approxi-
mated around specific time intervals. Each of these methods offers 
advantages and limitations depending on the class of LTV systems 
under consideration. 

The construction of a Lyapunov function (LF) for LTV systems 
is particularly challenging, as it requires solving a scalar differential 
equation that incorporates both improper and double integrals 
(Zhou et al., 2020). For scalar LTV systems, an LF construction 
method based on the integral of system parameters with a weight 
function over a finite time interval has been proposed. Specific con-
straints are imposed on the weight function to ensure that the Lya-
punov function remains positively defined and uniformly bounded. 
Furthermore, its time derivative, when evaluated according to the 
governing equations of the LTV system, must be negatively de-
fined—fulfilling a necessary stability criterion. 

Several novel methods for constructing LF for specific classes 
of LTV systems have been introduced (Kawano, 2020), including a 
proof of Lyapunov’s inverse theorem for asymptotic stability. Nec-
essary and sufficient conditions for stability have been established 
based on differential inequalities derived from Lyapunov’s ap-
proach (Zhou, 2016). Additionally, stability assessment algorithms 
employing Riccati equations and matrix inequalities have been de-
veloped to handle LTV systems subjected to disturbances con-
strained by quadratic bounds (Seiler et al., 2019). 

The application of stability theory to achieve predefined tech-
nical performance characteristics in LTV systems has been demon-
strated in various practical domains. Examples include spacecraft 
orientation control (Zhou, 2021; Mullhaupt et al., 2007) and the reg-
ulation of perturbed aircraft motion in pitch dynamics (Xie et al., 
2022). Despite these advancements, an analysis of the available lit-
erature reveals that insufficient attention has been dedicated to the 
development of methodological frameworks with direct applied 
value for LTV system analysis and synthesis. 

In classical control theory, the transfer function (TF) is used to 
determine the dynamic characteristics of a linear sta-tionary system 
and is defined as the ratio of the Laplace transform of the system’s 
output signal to the Laplace transform of its input signal. The deter-
mination of the TF coefficients for a second-order link that is equiv-
alent to an LTV system over a finite time interval requires approxi-
mating the time-dependent coefficients of the governing differential 
equations. One approach involves representing these variable com-
ponents as exponential functions (Avdieiev, 2024a), whose products 
with the system state variables and their derivatives are subse-
quently transformed via Laplace methods. Iterative refinement of 
these transformations ensures the accuracy of the resulting TF coef-
ficients. 

To further simplify the computational algorithm for determin-
ing TF coefficients, as compared to the methodology presented in 
Avdieiev (2024a), the present study aims to develop a methodolog-
ical framework for constructing an algorithm that minimizes the av-
erage absolute deviation between the dimensionless output state 
vectors of the LTV system and its second-order link approximation. 
This optimization is performed using the Levenberg-Marquardt al-
gorithm, which provides a robust numerical approach to achieving 
the desired coefficient accuracy. 

Addressing this problem is particularly relevant, as the existing 
literature does not sufficiently cover the methodological support 
necessary for the practical analysis and synthesis of LTV systems. 
By refining the methodological foundations of transfer function ap-
proximation, this study contributes to the broader effort of improv-
ing control strategies for complex time-varying systems. 

Mathematical Framework 

The solution to the named task is shown on the example of a 
time-varying system for controlling the rotational movement of a 
rocket in one plane.  

Without taking into account the executive device inertia, the 
disturbed movement of the mass center, fuel fluctuations and the 
body final stiffness, the system equation is as follows: 

 ẋ = a(𝑡) ⋅ x + f(𝑡);  x = [
𝜓

�̇�
] ; 

 a(𝑡) = [
0 1

𝑞0(𝑡) 𝑞1(𝑡)
] ; (1) 

 f(𝑡) = [
0

𝑝0(𝑡) ⋅ 𝜓𝑔(𝑡) + 𝑝1(𝑡) ⋅ �̇�𝑔(𝑡)
]. 

In equation (1) 𝜓, �̇� are the rotation angle of the missile body 

and its time derivative; g(t) is the input signal depending on time, 
that means the specified value of the missile body rotation angle; 
q0(t), q1(t), p0(t), p1(t) are variable coefficients that depends on the 
rocket inertial mass and aerodynamic characteristics, altitude and 
flight speed. 

The solution of system (1) can be obtained numerically, for ex-
ample, by the Runge-Kutta method, its results are presented in a ta-

ble, denote them 𝜓н(𝑡) and �̇�н(𝑡). They will be used in the iterative 
process of determining ТF coefficients using the Levenberg-Mar-
quardt method. 

As you know, ТF is the Laplace transform ratio of the output 

signal of the system (t) 

 𝐿{𝜓(𝑡)} = ∫ 𝜓(𝑡) ⋅ 𝑒−𝑠⋅𝑡 ⋅ 𝑑𝑡 = 𝜓(𝑠)
∞

0
  

to the Laplace transform of the input signal g(s), i.e. 

 𝑤(𝑠) =
𝐿{𝜓(𝑡)}

𝐿{𝜓𝑔(𝑡)}
=

𝜓(𝑠)

𝜓𝑔(𝑠)
,  

where L is the designation of the Laplace transform operator, s is a 
variable of complex type. 

To obtain the first approximation of the ТF based on equation 
(1), the coefficients q0, q1, p0, p1 are assumed to be constant and 
equal, for example, to their value at the midpoint of the selected time 
interval. This makes it possible to transform these equations accord-
ing to Laplace and determine the ТF of the second-order link in the 
form: 

 𝑤(𝑠) =
𝜓(𝑠)

𝜓𝑔(𝑠)
=

𝑝1⋅𝑠+𝑝0

𝑠2−𝑝1⋅𝑠+𝑞0
=

𝑝1⋅𝑠+𝑝0

𝑠2−2𝛼⋅𝑠+𝛼2+𝛽2, (2) 

where ,  are the real and imaginary part of the roots of the equa-
tion s2- р1∙s+q0=0. 

As can be seen from (2), the search for a ТF equivalent to a 
time-varying system should be carried out in the four-dimensional 

space of coefficients , , p0, p1.  
To reduce the duration of the iterative process of finding the 

ТF coefficients of the second-order equivalent link the solution of 
its differential equation 

 �̈� − 2𝛼 ⋅ �̇� + (𝛼2 + 𝛽2) ⋅ 𝜓 = 

 = 𝑝1 ⋅ �̇�𝑔(𝑡) + 𝑝0 ⋅ 𝜓𝑔(𝑡), (3) 

which follows from the ТF (2), the initial conditions and the input 

signal g(t), must be obtained analytically. 
In this work, two variants of input signals are considered: 
– in the form of the parabola equation with a vertex in the cen-

ter of a certain time interval, for example 0…2tp, and equal to zero 
at its edges 

 𝜓𝑔1(𝑡) = 𝑎1 ⋅ 𝑡
2 + 𝑏1 ⋅ 𝑡 + 𝑐1; (4) 

– in the form of two equations that specify the program for 
turning the rocket body to a given angle during the 2tp time interval 

 𝜓𝑔2(𝑡) =  
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 = {
𝑓
𝑖
(𝑡) = 𝑒𝑚 ⋅ (

𝑡2

2
+

𝑡

𝑑
−

𝑒𝑑⋅𝑡

𝑑2
) ,   0 ≤ 𝑡 ≤ 𝑡𝑝

𝑓
𝑖
(𝑡𝑝)+ 𝑒𝑚 ⋅ (𝑡 +

1−𝑒𝑑⋅𝑡

𝑑2
) ⋅ (𝑡 − 𝑡𝑝) − 𝑓

𝑖
(𝑡 − 𝑡𝑝),  𝑡𝑝 < 𝑡 ≤ 2𝑡𝑝

 (5) 

where the coefficients depend on the given value of the parabola at 
the top in the center of the interval, the magnitude of the angle of 
rotation and the desired transition process profile. 

For the case of zero initial values and the signal g1 (4) at the 
input of the system, the solution of equation (3) 

 𝜓(𝛼, 𝛽, 𝑝0, 𝑝1, 𝑡) =  

 = 𝑒𝛼𝑡 ⋅ (𝐴𝑐 ⋅ 𝑐𝑜𝑠 𝛽 𝑡 + 𝐴𝑠 ⋅ 𝑠𝑖𝑛 𝛽 𝑡) + 

 +𝐴 ⋅ 𝑡2 + 𝐵 ⋅ 𝑡 + 𝐶, (6) 

where 

 𝐴 =
𝑝0⋅𝑎1

𝛼2+𝛽2,  

 𝐵 =
1

𝛼2+𝛽2
⋅ (2𝑎1 ⋅ 𝑝1 + 𝑝0 ⋅ 𝑏1 + 4𝐴 ⋅ 𝛼),  

 𝐶 =
1

𝛼2+𝛽2
⋅ (𝑎1 ⋅ 𝑝1 + 𝑝0 ⋅ 𝑐1 − 2𝐴 + 2𝛼 ⋅ 𝐵),  

 𝐴𝑐 = −𝐶,  

 𝐴𝑠 =
−(𝐵+𝛼⋅𝐴𝑐)

𝛽
.  

For the case of zero initial values and signal g2 (5) at the input 
of the system, the solution of equation (3) can be written in a form 
like (6), but with other coefficients in its terms. 

In the first half of a certain trajectory section  

 𝜓(𝛼, 𝛽, 𝑝0, 𝑝1, 𝑡) = 𝑒𝛼𝑡 ⋅  

 ⋅ (𝐴𝑐 ⋅ 𝑐𝑜𝑠 𝛽 𝑡 + 𝐴𝑠 ⋅ 𝑠𝑖𝑛 𝛽 𝑡) +  

 +𝐴 ⋅ 𝑡2 + 𝐵 ⋅ 𝑡 + 𝐶 + 𝑓𝑒 ⋅ 𝑒
𝑑⋅𝑡,  

 0 ≤ 𝑡 ≤ 𝑡𝑝, (7) 

where 

 𝐴 =
𝑝0⋅𝑒𝑚

2⋅(𝛼2+𝛽2)
,  

 𝐵 =
𝑒𝑚

𝛼2+𝛽2 ⋅ (𝑝1 +
𝑝0

𝑑
+ 4𝐴 ⋅ 𝛼),  

 𝐶 =
1

𝛼2+𝛽2 ⋅ (
𝑒𝑚⋅𝑝1

𝑑
− 2𝛼 ⋅ 𝐵),  

 𝑓𝑒 =
−𝑒𝑚⋅(

𝑝0
𝑑
+𝑝1)

𝑑⋅(𝑑2−2𝛼⋅𝑑+𝛼2+𝛽2)
,  

 𝐴𝑐 = −𝐶 − 𝑓𝑒 ,  

 𝐴𝑠 =
−𝑑⋅𝑓𝑒−𝐵−𝐴𝑐

𝛽
.  

In the second half of a certain trajectory section 

 𝜓(𝛼, 𝛽, 𝑝0, 𝑝1, 𝑡) =  

 = 𝑒𝛼⋅(𝑡−𝑡𝑝) ⋅ [𝐴𝑐 ⋅ 𝑐𝑜𝑠 𝛽 (𝑡 − 𝑡𝑝) +  

 +𝐴𝑠 ⋅ 𝑠𝑖𝑛 𝛽 (𝑡 − 𝑡𝑝)) + 𝐴 ⋅ (𝑡 − 𝑡𝑝)
2 +  

 +𝐵 ⋅ (𝑡 − 𝑡𝑝) + 𝐶 + 𝑓𝑒 ⋅ 𝑒
𝑑⋅(𝑡−𝑡𝑝), (8) 

 𝑡𝑝 < 𝑡 ≤ 2𝑡𝑝  

where 

 𝐴 =
−𝑒𝑚⋅𝑝0

2⋅(𝛼2+𝛽2)
,  

 𝐵 =
1

𝛼2+𝛽2 [𝑓𝑎(𝑡𝑝) ⋅ 𝑝0 − 𝑒𝑚 ⋅ (
𝑝0

𝑑
+ 𝑝1) + 2𝛼 ⋅ 𝐴],  

 𝐶 =
1

𝛼2+𝛽2 [
𝑝0 ⋅ 𝑓𝑖(𝑡𝑝) +

+𝑝1 ⋅ 𝑓𝑎(𝑡𝑝) −
𝑝1⋅𝑒𝑚

𝑑
− 2𝐴 + 2𝛼 ⋅ 𝐵

],  

 𝑓𝑒 =
𝑒𝑚⋅(𝑝1+

𝑝0
𝑑
)

𝑑⋅(𝑑2−2𝛼⋅𝑑+𝛼2+𝛽2)
,  

 𝐴𝑐 = 𝜓(𝑡𝑝) − 𝐶 − 𝑓𝑒 ,  

 𝐴𝑠 =
1

𝛽
[�̇�(𝑡𝑝) − 𝛼 ⋅ 𝐴𝑐 − 𝑓𝑒 ⋅ 𝑑],   

 𝑓𝑎(𝑡) = 𝑒𝑚 ⋅ (𝑡 +
1−𝑒𝑑⋅𝑡

𝑑
).  

The equivalence of a link with a TF of type (2) to a time-vary-
ing system is established by comparing their transient processes at 

the selected test signals g1, g2 (4, 5). The coefficients of the link 
are found by minimizing the criterion, the value of which quantita-
tively characterizes the results of the transient processes compari-
son. 

The work considers variants of criteria from the point of view 
of local extrema. Part of them is described in (Avdieiev, 2024b). 

Criterion of the minimum sum of the squares of the difference 
in the angles of missile body rotation  

 𝑄1(𝑟) = ∑ [𝑛
𝑖=1 𝜓(𝑟, 𝑡𝑖) − 𝜓н(𝑡𝑖)]

2, (9) 

 𝑡𝑖 = 𝑖 ⋅ 𝛥𝑡,  

 𝑛 =
2𝑡𝑝

𝛥𝑡
,  

where Δt is the integration step of the system of equations (1),  

 𝑟 = [𝛼, 𝛽, 𝑝0, 𝑝1]
𝑇  

is the vector of TF coefficients introduced to shorten the record. 
Criterion of the minimum square of the difference of the angles 

of the state vector direction  

 𝑄2(𝑟) = ∑ [
𝑎𝑟𝑐𝑡𝑔 [

�̇�(𝑟,𝑡𝑖)

𝜓(𝑟,𝑡𝑖)
] −

−𝑎𝑟𝑐𝑡𝑔 [
�̇�н(𝑡𝑖)

𝜓н(𝑡𝑖)
]
]

2

𝑛
𝑖=1 . (10) 

 
Criterion of the minimum square of the difference of the mod-

ules of the dimensionless state vector 

 𝑄3(𝑟) = ∑ [𝑚(𝑟, 𝑡𝑖) −
𝑛
𝑖=1 𝑚н(𝑡𝑖)]

2, (11) 

where 

 𝑚(r, 𝑡) = √[𝜓(r, 𝑡)/𝜓𝑚]
2 + [�̇�(r, 𝑡)/𝜓𝑚𝑡]

2,  

 𝑚н(𝑡) = √[𝜓н(𝑡)/𝜓𝑚]
2 + [�̇�н(𝑡)/𝜓𝑚𝑡]

2;  

m, mt are the angle and angular speed of the body rotation, used 
for the transition to dimensionless quantities. 

Criterion of the minimum value of the area difference under 
the curves of transient processes 

 𝑄4(𝑟) = 𝛥𝑡 ⋅ |∑ [𝜓(𝑟, 𝑡𝑖)
𝑛
𝑖=1 − 𝜓н(𝑡𝑖)]|. (12) 

The criterion for the minimum of the average value of the dif-
ference between the state vectors 

 𝑄5(𝑟) =
1

𝑛
∑ √[

[𝜓(𝑟,𝑡𝑖)−𝜓н(𝑡𝑖)]

𝜓𝑚]2
+

[�̇�(𝑟,𝑡𝑖)−�̇�н(𝑡𝑖)]

𝜓𝑚𝑡]
2 ]𝑛

𝑖=1 . (13) 

The criterion of the minimum value of the difference in the 
area of phase portraits 

 

 𝑄6(𝑟) = |𝑆𝑓(𝑟) − 𝑆н|, (14) 

where 

 𝑆𝑓(𝑟) = ∫ �̇�(𝑟
𝜓𝑚𝑎𝑥

0
, 𝑡) ∙ 𝑑𝜓(𝑟, 𝑡) =  

 = ∫ �̇�(𝑟, 𝑡)2 ⋅ 𝑑𝑡
2𝑡𝑝
0

= 𝛥𝑡 ⋅ ∑ �̇�(𝑟, 𝑡𝑖)
2𝑛

𝑖=1 ,  

 𝑆𝐻 = Δ𝑡 ∙ ∑ 𝜓𝑛
𝑛
𝑖=1 (𝑡𝑖)

2  
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From the point of view of the local extrema location, the prop-
erties of criteria (9-14) were established experimentally using the 
Levenberg-Marquardt method on the example of the data in the ta-

ble 1 with test signals g1, g2 (4, 5). 
As the conducted experiments have shown, after studying the 

results of using a certain criterion for the purpose of quantitative 
analysis of the equivalence level of equations (1) and ТF (2) de-
pending on time, it may be appropriate to construct a difference 
phase portrait in coordinates 

 𝜓(𝑟) − 𝜓н �̇�(𝑟) − �̇�н.  

Table 1 – dependence of TF coefficients on time 

(developed by author) 

t q0 p0 p1 

s s-2 s-1 

0 3.31 -4.53 -1.87 

16 4.56 -5.52 -2.28 

32 7.14 -7.51 -3.10 

 
Based on the location of local extrema in the space of TF co-

efficients, that is, coordinates of vector r, and the minimum values 
of the criterion, option Q5 (13) is preferred. The results of its use are 
in the table 2. 

Table 2 – TF coefficients before and after minimizing  

the criterion Q5(r) (developed by author) 

Test signal Definition 
point 

  p0 p1 Q5 

g1 primary – 1.20 1.88 – 5.85 – 2.4 0.075 

final – 1.23 0.57 – 2.20 – 3.7 0.046 

g2 primary – 1.20 1.88 – 5.85 – 2.4 0.340 

final – 1.02 0.63 – 1.60 – 3.7 0.091 

 
Based on the final results of determining the TF coefficients 

(2) in the case of the test signal g1 (table 2), we will obtain an esti-
mate of the following dynamic characteristics of the time-varying 
system in the relative time range 0...32 s (table 1): stability margin 
on the roots plane of the characteristic polynomial 1.2 s-1, the dura-
tion of the transient process is 2.4 s, the frequency of the oscillatory 
component of the transient process is 0.09 Hz, the amplitude-phase 

dependence on the circular frequency  

 𝑤(𝑗𝜔) =
𝜓(𝑗𝜔)

𝜓𝑔(𝑗𝜔)
=

−4−11.5𝜔2+𝑗𝜔⋅(1.3+3.7𝜔2)

𝜔4−3.7𝜔2+17
,  

where j2 = – 1. 
The named estimates of dynamic characteristics can be used to 

make technical decisions in the process of designing systems with 
time-varying parameters. 

Conclusions 

Based on the calculations performed for the selected data ex-
ample, this study demonstrates the feasibility of determining the 
transfer function (TF) coefficients for a second-order link. From the 
perspective of minimizing the average absolute deviation between 
the dimensionless state vectors over a selected time interval, the ob-
tained TF is equivalent to the given linear time-varying (LTV) sys-
tem. 

The application of the transfer function approach enables the 
estimation of key dynamic characteristics, including the stability 
margin in the root plane of the characteristic polynomial, the nature 
and duration of transient processes, as well as the system's gain as a 
function of input signal frequency. This allows for a comprehensive 
analysis of amplitude-frequency and phase-frequency dependen-
cies, which are crucial for assessing system behavior under various 
operating conditions. 

A novel aspect of this study is the use of the Levenberg-Mar-
quardt method to determine the TF coefficients, ensuring their 
equivalence to the governing equations of an LTV system over a 
specified time interval based on the selected optimization criterion. 
This approach enhances the accuracy of TF-based approximations 
and provides a refined tool for analyzing time-varying dynamic sys-
tems. 

The practical significance of this work lies in expanding the 
methodological framework for the analysis and synthesis of LTV 
systems. The proposed methodology offers a structured approach 
for approximating LTV system dynamics using TF representations, 
contributing to the development of more effective modeling and 
control strategies. 

A potential direction for future research is the determination of 
an equivalent stationary approximation for the LTV system govern-
ing the rocket’s rotational motion. This would involve accounting 
for the inertia of the actuator and the effects of disturbed motion of 
the center of mass, further refining the accuracy of system modeling 
and control. 
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