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Transfer Function of a Time-Varying Control System 

Considering Actuator Inertia 

Volt Avdieiev  

Purpose. Methodological support for building an algorithm for determining the transfer function (TF) of a link, 
which, considering the actuator dynamics and the disturbed motion of the mass center, is equivalent on a selected 
trajectory section to a time-varying control system (TCS) for the rocket movement in one plane. Design / Method 
/ Approach. TCS is modeled using differential equations with changing coefficients. To define the type of TF, the 
Laplace transformation of the equations is performed, while its coefficients are determined by finding the 
equivalence criterion extreme of the output signals of the TCS and the link under the action of the test signal. 
Findings. The example of the TCS for the rocket movement in the yaw plane shows the possibility of an algorithm 
constructing for studying its dynamic characteristics by using the mathematical apparatus of linear stationary 
systems. Theoretical Implications. Finding the extreme of the equivalence criterion of the TCS and the link using 
the Levenberg-Marquardt method, with the coordinates of the extreme point being the arguments of the TF 
coefficients. Practical Implications. Using the TF of equivalent link, it is possible to obtain for the selected 
trajectory section a quantitative estimate of the stability margin, the duration of the transient process, the accuracy 
of disturbance compensation, and the transmission coefficient depending on the signal frequency input. The 
obtained results contribute to the methodological base expansion for linear time-varying systems research. 
Originality / Value. Analytical solution of the link differential equation for a test signal in the form of a sequence 
of rectangular and parabolic pulses using the Laplace transform. This will make it possible to obtain estimates of 
individual indicators of systems with time-varying parameters by using the mathematical apparatus of stationary 
systems. Research Limitations / Future Research. The algorithm is for the case of TCS of a rocket motion in 
one plane developed. The next stage of the study is to assess the algorithm complexity level as the order of the 
TCS mathematical model increases. Article Type. Methodological. 

Keywords: 
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Мета. Методичне забезпечення побудови алгоритму визначення передатної функції (ПФ) ланки, яка з 
урахуванням динаміки виконавчого пристрою та збуреного руху центру мас є еквівалентною на обраній 
ділянці траєкторії нестаціонарній системі керування (НСК) рухом ракети в одній площині. Дизайн / Метод 
/ Підхід. Модель НСК це диференційні рівняння зі змінними коефіцієнтами. Для визначення типу ПФ 
проводиться перетворення рівнянь за Лапласом, а її  коефіцієнти визначають шляхом знаходження 
екстремуму критерію еквівалентності вихідних сигналів НСК і ланки під дією тестового сигналу. 
Результати. На прикладі НСК рухом ракети у площині рискання показана можливість побудови алгоритму 
дослідження її динамічних характеристик шляхом використання математичного апарату лінійних 
стаціонарних систем. Теоретичне значення. Використання методу Левенберга-Марквадта для 
знаходження екстремуму критерію еквівалентності НСК і ланки, координати екстремальної точки якого є 
аргументами коефіцієнтів ПФ. Практичне значення. Спираючись на ПФ еквівалентної ланки, можна 
отримати для вибраної дільниці траєкторії кількісну оцінку запасу стійкості, тривалості перехідного процесу, 
показників точності компенсації збурень і коефіцієнта передачі залежно від частоти вхідного сигналу. 
Отримані результати сприяють розширенню методичної бази дослідження лінійних нестаціонарних систем. 
Оригінальність / Цінність. Аналітичне рішення диференційного рівняння ланки при тестовому сигналі у 
вигляді послідовності імпульсів прямокутної і параболічної форми з використанням перетворення Лапласа. 
Це дасть можливість отримати оцінки окремих показників систем із змінними у часі параметрами шляхом 
використання математичного апарату стаціонарних систем. Обмеження дослідження / Майбутні 
дослідження. Алгоритм розроблено для НСК ракети в одній площині. Наступний етап дослідження це 
оцінка рівня складності алгоритму розрахунків при збільшенні порядку математичної моделі НСК. Тип 
статті. Методична. 
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Time-varying control system (TCS) are a wide range of pro-
cesses, ranging from rocket and space technology, production tech-
nology, turbofan engines, etc.; their analysis and synthesis is a com-
plex mathematical problem, the solution of which has so far been 
obtained only for individual cases (Stenin at al., 2023). Most works 
on TCS in various versions of the problem statement consider the 
issue of synthesizing the optimal control law and ensuring stability. 
A sample data management algorithm has been developed for the 
case of linear TCSs, an asymptotic stability criterion has been sub-
stantiated (Zhang et al., 2019), and a stability criterion for the class 
of systems with piecewise constant parameters has been derived 
(Briat, 2015). 

The traditional mathematical apparatus for analyzing linear 
stationary systems, for example, the Laplace transform, TF, charac-
teristic polynomial, and frequency response, is used in the study of 
TCS, where the change in parameters depending on time has known 
limitations. This makes it possible to obtain approximate estimates 
of individual dynamic characteristics, in particular, the stability 
margin, the type and duration of the transient process of disturbance 
compensation. It is shown that uniform complete controllability of 
continuous TCS is equivalent to the possibility of arbitrary place-
ment of the characteristic polynomial roots. The main components 
of the proof are the reduction of the system to an upper triangle and 
the use of the concept of uniform complete stabilization (Babiarz et 
al., 2021). 

Using the example of a TCS with rocket rotational motion in 
one plane without taking into account the actuator inertia and the 
disturbed motion of the mass center, the possibility of using the La-
place transform to determine the amplitude stability margin and the 
phase stability margin is shown. The variable components of the 
model coefficients depending on time are presented in the form of a 
polynomial (Avdieiev & Alexandrov, 2023) and in the form of a 
sum of exponential functions (Avdieiev & Alexandrov, 2024). For 
the given data example, the error in determining these indicators is 
within 20–30%. An algorithm for calculating the TF coefficients of 
a second-order link is proposed, which is equivalent to the TCS in 
terms of dynamic characteristics on the selected section of the tra-
jectory (Avdieiev, 2024). Algorithms for the TCS synthesis, some 
of the model parameters of which are in the uncertainty zone have 
been developed using the mathematical apparatus of linear matrix 
inequalities, (Nguyen & Banjerdpongchai, 2011), observation de-
vices (Akremi et al., 2023), and sensor signals of the state vector 
individual coordinates (Avdieiev, 2021).  

The example of a spacecraft orientation system with a mag-
netic drive shows the effectiveness of using Lyapunov differential 
equations in terms of ensuring stability indicators and finding a 
compromise between the adjustment time and the power require-
ments of the control system (Zhou, 2021). Based on the mathemat-
ical apparatus of Lyapunov functions, various approaches to ensur-
ing the stability indicators of TCS have been developed. In particu-
lar, the inverse Lyapunov theorem for asymptotic stability has been 
proven (Kawano, 2020), an eigenvalue criterion has been proposed, 
and a condition for linear matrix inequalities has been obtained, 
which, compared with existing results, expands the range of TCS 
characteristics for which the obtained indicators retain their values 
(Chen & Yang, 2016).A systematic method for constructing Lya-
punov functions for scalar linear systems is proposed, and a stability 
criterion for systems with piecewise constant parameters is proved 
(Zhou et al., 2020). It is proved that the TCS asymptotic stability 
occurs under the condition of negative real parts of the matrix ei-
genvalues and a certain limit on the rate of the parameters change, 
as well as under complete controllability (Guo & Rugh, 1995). It is 
shown that the complete TCS controllability implies the existence 
of feedback, and its connection with the Lyapunov exponent in sta-
bility theory is established (Anderson et al., 2013). 

In addition to the requirement of a given stability margin, the 
TCS is required to ensure accuracy with the limited actuator power. 
The synthesis of optimal control laws for time-varying objects in 
the general case is a complex problem that cannot be solved analyt-
ically, which is associated with the solving complexity of the vector-
matrix Riccati equation. An approach to solving the problem of the 
control law synthesis for one class of linear TCSs is proposed, 
which is based on the Pontryagin maximum principle. To establish 
the connection between the auxiliary vector and the state vector, the 
fundamental matrix of the system of simplified equations is used, 

which is determined by using the mathematical apparatus of Walsh 
functions. Since the mathematical model parameters are piecewise 
constant functions, it becomes possible to significantly simplify 
their practical implementation compared to matrices obtained based 
on the Riccati equation (Stenin et al., 2019). 

Predictive control with model is a proven method to achieve 
optimal performance for linear system with constant parameters, 
while for time-varying one its use requires significant complica-
tions. An approximate optimal solution to the problem of predictive 
control of a non-stationary system for the Q-LPV class is proposed 
(Mate et al., 2023). 

As is known, despite its high performance, predictive control 
requires significant computational resources, which complicates its 
implementation. The latest approach to this problem solving is to 
use a strategy that provides a solution to the control problem with 
limited computational capabilities. An example of its implementa-
tion is given for discrete TCS (Amiri & Hosseinzadeh, 2025).  

The possibility of using the developed mathematical apparatus 
of stationary systems for studying TCS by rocket motion is provided 
by the method of frozen coefficients, known in the last century, ac-
cording to which the coefficients of the TCS model in a small inter-
val of a selected trajectory point are taken as constant. The disad-
vantage of this method is the dependence of the obtained estimates 
on the distance of the interval point to its middle.  

The algorithm for determining a second-order stationary link, 
which in terms of dynamic characteristics is equivalent to the ТСS 
of the rocket motion on a selected trajectory section, was proposed 
in work (Avdieiev, 2025), where the average quantitative assess-
ment of equivalence for the section is found by iteration. This work 
does not consider the actuator inertia and the disturbed motion of 
the mass center in the direction perpendicular to the trajectory plane, 
which reduces the estimates reliability of the ТСS dynamic charac-
teristics, in particular, the size of its stability region in the space of 
the control law coefficients. 

Analysis of available sources shows that most of them are de-
voted to obtaining theoretical results, while the development of 
methodological support of applied value for the design of aircraft 
motion control systems, in particular missiles and spacecraft, is not 
given due attention. This work sets the task of developing a meth-
odological support for constructing an algorithm for determining 
the transfer function of a link, which, taking into account the actua-
tors inertia and the disturbed motion of the mass center, is equivalent 
to a time-varying control system of missile motion in one plane on 
a selected trajectory section. This allows us to use the mathematical 
apparatus of stationary systems to estimate the stability margin, 
static error of disturbance compensation, and other indicators. 

Problem statement 

The TCS equation for rocket motion in one plane, for example, 
yaw, considering the actuator inertia and the disturbed motion of the 
mass center (Avdieiev, 2021): 

 ẋ = a(𝑡) ⋅ x + f(𝑡), (1) 

where 

 a(𝑡) =

[
 
 
 
 
 

0 1 0 0 0
𝑎𝜓𝜓(𝑡) 0 0 𝑎𝜓𝛿(𝑡) 0

𝑎𝑧𝜓(𝑡) 0 0 𝑎𝑧𝛿(𝑡) 0

0 0 0 0 1
𝜇 ⋅ 𝑘𝜓 𝜇 ⋅ 𝑘𝜓

′ 𝜇 ⋅ 𝑘𝑧
′ −𝜇 −𝜇 ⋅ 𝜉 ⋅ 𝑇]

 
 
 
 
 

,  

 f(𝑡) = c ⋅ 𝑓𝑧(𝑡),   c = [0 𝑘𝑚 1 0 0]𝑇;   

 x = [𝜓  �̇�  𝑉𝑧  𝛿  �̇�]
𝑇

,  

where 𝑎𝜓𝜓(𝑡), 𝑎𝜓𝛿(𝑡), 𝑎𝑧𝜓(𝑡), 𝑎𝑧𝛿(𝑡) are parameters of the 

TCS model depending on time t; 𝜉,  𝑇 are damping coefficient and 
time constant of the actuator; 𝑓𝑧(𝑡) is a perturbing acceleration of 
the rocket mass center; 𝑘𝑚 is a coefficient that takes into account 
the distance between the mass center and the point of application of 
the resultant aerodynamic forces, as well as the ratio between the 
moment of inertia and the mass; 𝑘𝜓 , 𝑘𝜓

′ , 𝑘𝑧
′  are control law coef-

ficients; 𝜇 = 1/𝑇2 . The coordinates of the vector x are the follow-

ing quantities: 𝜓,  �̇�  are yaw angle and its derivative with respect 
to time; 𝑉𝑧 is a projection of the velocity of the disturbed motion of 

https://www.sciencedirect.com/author/55882920300/bin-zhou
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the mass center onto the axis perpendicular to the trajectory plane; 

𝛿,  �̇� are an equivalent angle of the actuator rudder rotation the and 
its derivative. If in a small neighborhood of the selected trajectory 
point the elements of the matrix a in equation (1) are considered 
constant, then the equation (1) can be transformed by Laplace, and 
five TF can be obtained: 

 𝑤𝑖(𝑠) =
𝑥𝑖(𝑠)

𝑓𝑧(𝑠)
=

𝑀𝑖(𝑠)

𝑄(𝑠)
=

∑ 𝑞𝑚𝑖𝑗⋅𝑠
𝑗3

𝑗=0

𝑠5+∑ 𝑞𝑗⋅𝑠
𝑗4

𝑗=0

,  𝑖 = 1. . .5 (2) 

The task is to develop a methodological support for construct-
ing an algorithm for determining a link that, from the point of view 
of the selected criterion, is equivalent to the TCS of the rocket's mo-
tion in one plane on a certain trajectory section and has a TF of the 
form (2). 

The problem solution 

Based on (1), the coefficients of the characteristic polynomial 
Q(s) in a small neighborhood of time t depending on the elements 
of the matrix a(t) are as follows: 

 𝑞0(𝑡) = 𝜇 ⋅ 𝑘𝑧
′ ⋅ [𝑎𝜓𝜓

(𝑡) ⋅ 𝑎𝑧𝛿(𝑡) − 𝑎𝜓𝛿(𝑡) ⋅ 𝑎𝑧𝜓(𝑡)],  

 𝑞1(𝑡) = −𝜇 ⋅ [𝑎𝜓𝜓(𝑡) + 𝑎𝜓𝛿(𝑡) ⋅ 𝑘𝜓],  

 𝑞2(𝑡) = −𝜇 ⋅ [𝑎𝑧𝛿(𝑡) ⋅ 𝑘𝑧
′ + 𝑎𝜓𝛿(𝑡) ⋅ 𝑘𝜓

′ + 𝜍 ⋅ 𝑇 ⋅ 𝑎𝜓𝜓(𝑡)],  

 𝑞3(𝑡) = 𝜇 − 𝑎𝜓𝜓
(𝑡), 𝑞4 = 𝜇 ⋅ 𝜍 ⋅ 𝑇. (3) 

The sequence of actions for determining the coefficients of the 
TF of the form (2) does not depend on the number of the vector x 
coordinate, so let's consider it using the example of the coordinate 

x1=. Based on model (1), the coefficients of the numerator of the 
TF w1(s) in a small neighborhood of time t are determined: 

 𝑞𝑚0(𝑡) = 𝜇 ⋅ 𝑘𝑧
′ [𝑎𝜓𝛿(𝑡) − 𝑘𝑚 ⋅ 𝑎𝑧𝛿(𝑡)],  

 𝑞𝑚1 = 𝑘𝑚 ⋅ 𝜇,  𝑞𝑚2 = 𝑘𝑚 ⋅ 𝜇 ⋅ 𝜍 ⋅ 𝑇,  𝑞𝑚3 = 𝑘𝑚 (4) 

A link with a TF of the form (2) is taken to be equivalent to a 
TCS on a certain trajectory section in terms of dynamic characteris-
tics, when the criterion for the difference of the output signals of the 
TCS and the link in the searching process in the four-dimensional 

space of the quantities a, a, az, az will take a minimum value. 

The coordinates of the output signals vector are the yaw angle  and 
its four time derivatives. The linear differential equation of the link 

that follows from TF (2), for the coordinate , is as follows: 

 𝜓(𝑡)(5) + ∑ 𝑞𝑖 ⋅ 𝜓(𝑡)(𝑖) = ∑ 𝑞𝑚𝑖 ⋅ 𝑓𝑧(𝑡)
(𝑖)3

𝑖=0
4
𝑖=0 , (5) 

where the superscripts define the time derivative of the correspond-
ing order. 

The input signal fz(t), necessary for the emergence of a transi-
ent process of disturbance compensation, depends, in particular, on 
the estimate of the transient process duration at the midpoint of the 
selected trajectory interval. The paper considers a variant of the dis-
turbance fz(t) at the input of TCS and at the input of the link with the 

TF of the form (2) as a sequence of four pulses: figure 1 − test signal 

as rectangular pulses, figure 2 − test signal as pulses in the shape of 
parabola. As a equivalence criterion the TCS and the link, we take 
the average on the selected trajectory section for n moments of time 
the value of the modulus of the coordinates difference of the TCS 

output signal vector z and the link output signal vector a with the 

signal fz(t) at their inputs. The vector z at n points of the trajectory 
section is the result of the numerical solution of equation (5) con-
sidering the time dependence of the coefficients (3, 4) and remains 
constant in the process of finding the minimum criterion. The vector 

a at n points of the trajectory section is determined by analytically 

solving equation (5) depending on the values a, a, az, az, which 
vary in the process of the criterion minimum finding. The presence 
of an analytical solution significantly reduces the duration of the it-
erative process of the minimum finding. Thus, the equivalence cri-
terion of the TCS and the link can be written as 

 𝑅(𝑎𝜓𝜓, 𝑎𝜓𝛿 , 𝑎𝑧𝜓, 𝑎𝑧𝛿) =  

 =
1

𝑛
∑ ∑ |𝜓𝑧𝑖𝑘 − 𝜓𝑎𝑖𝑘(𝑎𝜓𝜓, 𝑎𝜓𝛿 , 𝑎𝑧𝜓, 𝑎𝑧𝛿)|/𝑥𝑚𝑘

5
𝑘=1

𝑛
𝑖=1 , (6) 

here xm is an array of numbers for transition to dimensionless coor-
dinates. 

 

Figure 1 − Test signal as rectangular pulses (Source: author) 

 

Figure 2 − Test signal as pulses in the shape of parabola 

(Source: author) 

As a result of the criterion (6) minimum found in the four-di-

mensional space a, a, az, az the TF coefficients of the form (2) 
qm0, q0, q1, q2, q3 are determined, which in the relations (3, 4) de-
pend on time.  The search for the minimum of criterion (6) is carried 
out by the Levenberg-Marquardt method, the efficiency of which in 
terms of time consumption depends on the choice of the algorithm 
for the analytical solution of the differential equation (5) for the test 
signal fz (t) (Fig. 1, 2).  According to Fig. 1 

 𝑓𝑧(𝑡) = {
𝑓0
0

 
0 ≤ 𝑡 − 𝛥𝑡 ⋅ 𝑙 ≤ 𝛥𝑡𝑎
𝛥𝑡𝑎 < 𝑡 − 𝛥𝑡 ⋅ 𝑙 < 𝛥𝑡

 𝑙 = 0. . .3, (7) 

where l, Δta are pulse number and its duration; 4Δt is an interval of 
the trajectory section to which the equivalent link corresponds. 

The Laplace transform of the differential equation (5) with 
zero initial values and a constant perturbation f0 gives the image of 
the first coordinate of the link output signal vector  

 𝜓(𝑠) =
𝑞𝑚0⋅𝑓0

𝑠⋅𝑄(𝑠)
.  

As is known from the operational calculus theory, the original 
of this image 

 𝜓(𝑡) = 𝑞𝑚0 ⋅ 𝑓0 ⋅ (
1

𝑞0
+ ∑

𝑒𝑠𝑘⋅𝑡

𝑠𝑘⋅𝑑𝑄𝑠(𝑠𝑘)
4
𝑘=0 ),  

  (8) 

 𝑑𝑄𝑠(𝑠𝑘) =
𝑑𝑄

𝑑𝑠
(𝑠𝑘) = 5𝑠𝑘

4 + ∑ 𝑞𝑗+1 ⋅ (𝑗 + 1) ⋅ 𝑠𝑘
𝑗3

𝑗=0   

where sk is the root of the polynomial Q(s) with number k. 
The next four coordinates of the output signal vector of the link 

 𝜓(𝑖)(𝑡) = 𝑞𝑚0 ⋅ 𝑓0 ⋅ (∑
𝑠𝑘
𝑖−1⋅𝑒𝑠𝑘⋅𝑡

𝑑𝑄𝑠(𝑠𝑘)
4
𝑘=0 ) ,  𝑖 = 1. . .4. (9) 

The relation (8, 9) is an analytical solution of equations (5) for 
the input signal (7), but when the signal shape changes (Fig. 1, 2), 
the initial values components, which are the result of the solution 
for the previous shape, should be added to it. 
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Based on the operational calculus rules, the image component 
of the first coordinate of the output signal vector of the link taking 

in account five initial values 𝜓0
(𝑖)

 

 𝜓𝑠𝑡(𝑠) =
𝐹(𝑠)

𝑄(𝑠)
,  𝐹(𝑠) = ∑ 𝑏𝑘 ⋅ 𝑠𝑘3

𝑘=0 + 𝑠4 ⋅ 𝜓0
(0)

, (10) 

𝑏𝑘 = 𝜓0
(4−𝑘)

+ ∑ 𝑞𝑖+𝑘+1 ⋅ 𝜓0
(𝑖)

3−𝑘

𝑖=0

. 

Original of image (10) according to the operational arithmetic 
rules  

 𝜓𝑠𝑡
(0)

(𝑡) = ∑
𝐹(𝑠𝑘)

𝑑𝑄𝑠(𝑠𝑘)
⋅ 𝑒𝑠𝑘⋅𝑡4

𝑘=0 . (11) 

The following four components determined by the initial val-
ues of the coordinates of the vector of the link’s output signal: 

 𝜓𝑠𝑡
(𝑖)

(𝑡) = ∑
𝐹(𝑠𝑘)⋅𝑠𝑘

𝑖

𝑑𝑄𝑠(𝑠𝑘)
4
𝑘=0 ⋅ 𝑒𝑠𝑘⋅𝑡 ,  𝑖 = 1. . .4. (12) 

The obtained analytical solution (8-12) of the differential equa-
tion (5) considering the initial values, which are updated when the 
shape of the test disturbance signal (7) changes, is used to find the 
minimum of criterion (6) by the Levenberg-Marquardt method in 

the four-dimensional space of quantities a, a, az, az. 
For the case of a test signal fz(t) in the form of a sequence of 

pulses of parabolic form (Fig. 2), the analytical solution of the dif-
ferential equation (5) can also be obtained using the operational cal-
culus rules.  

In the interval of one pulse, the test signal is a parabola 

 𝑓𝑧(𝜏) = 𝑎𝜏2 + 𝑏𝜏 + 𝑑,  𝜏 = 0. . . 𝛥𝑡𝑎, (13) 

where 𝑎 =
−4𝑓0

𝛥𝑡𝑎
2 ,  𝑏 =

4𝑓0

𝛥𝑡𝑎
,  𝑑 = 0. 

From TF (2) Laplace transform of the yaw angle 

 𝑥1(𝑠) = 𝜓(𝑠) = 𝑓𝑧(𝑠) ⋅ 𝑀1(𝑠)/𝑄(𝑠),  (14) 

 𝑀1(𝑠) = ∑ 𝑞𝑚𝑘 ⋅ 𝑠𝑘3
𝑘=0   

Differential equation of the equivalent link according to (13, 
14) 

 𝜓(5) + ∑ 𝑞𝑘 ⋅ 𝜓(𝑘) = 𝑞𝑚0 ⋅ (𝑎𝜏2 + 𝑏𝜏) +4
𝑘=0   

 +𝑞𝑚1 ⋅ (2𝑎𝜏 + 𝑏) + 2𝑞𝑚2 ⋅ 𝑎 =  

 = 𝜈0 + 𝜈1 ⋅ 𝜏 + 𝜈2 ⋅ 𝜏2. (15) 

The variant of sequential actions for obtaining the solution of 
equation (15) is as follows. 

The Laplace transformation of (15) gives 

 𝜓(𝑠) ⋅ 𝑄(𝑠) =
𝜈0⋅𝑠

2+𝜈1⋅𝑠+2𝜈2

𝑠3 =
𝑃(𝑠)

𝑠3 ,  

therefore, the second derivative of the solution 

 �̈�(𝜏) = 𝜓(2)(𝜏) = 𝐿−1 {
𝑃(𝑠)

𝑠⋅𝑄(𝑠)
} =  

 =
2𝜈2

𝑞0
+ ∑

𝑃(𝑠𝑘)

𝑠𝑘⋅𝑑𝑄𝑠(𝑠𝑘)
⋅ 𝑒𝑠𝑘⋅𝜏𝑘=4

𝑘=0 ,  

where the symbol L-1 means the inverse Laplace transform, i.e. the 
transition from the image to the original. 

Higher-order derivatives according to the operational calculus 
rules 

 𝜓(𝑙)(𝜏) = ∑
𝑃(𝑠𝑘)⋅𝑠𝑘

𝑙−3

𝑑𝑄𝑠(𝑞,𝑠𝑘)
⋅ 𝑒𝑠𝑘⋅𝜏;  𝑙 = 3,4;4

𝑘=0  (16) 

First and zero order derivatives 

 �̇�(𝜏) = ∫ �̈�(𝜏1) ⋅ 𝑑𝜏1 =
𝜏

0
  

 =
2𝜈2

𝑞0
⋅ 𝜏 + ∑

𝐵𝑘⋅𝑒𝑠𝑘⋅𝜏1

𝑠𝑘

4
𝑘=0 |0

𝜏 =  

 =
2𝜈2

𝑞0
⋅ 𝜏 + ∑

𝐵𝑘⋅(𝑒𝑠𝑘⋅𝜏−1)

𝑠𝑘

4
𝑘=0 , (17) 

 𝐵𝑘 =
𝑃(𝑠𝑘)

𝑠𝑘⋅𝑑𝑄𝑠(𝑞,𝑠𝑘)
,  

 𝜓(𝜏) = 𝜓(0)(𝜏) = ∫ �̇�(𝜏1) ⋅ 𝑑𝜏1 =
𝜏

0
.  

    =
𝜈2⋅𝜏

2

𝑞0
+ ∑ {

𝐵𝑘

𝑠𝑘
2 ⋅ (𝑒𝑠𝑘⋅𝜏 − 1) −

𝐵𝑘

𝑠𝑘
⋅ 𝜏}4

𝑘=0 . (18) 

The obtained solutions (16-18) of equation (15) for the case of 
a parabolic test pulse (Fig. 2) can be used to determine the output 
signal of the equivalent circuit for a sequence of test pulses in the 
form of a parabola, taking into account the initial conditions when 
changing the waveform similarly to a sequence of rectangular 
pulses. 

Let us consider the definition of the link, which on the selected 
trajectory interval is equivalent to the TCS of the rocket motion in 
the yaw plane, using the data example dependences on the time of 

the model (1) coefficients (Source: author): a(t) – figure 3, a(t) 

– figure 4, az(t) – figure 5, az(t) – figure 6.  As is known, the insta-
bility in time of the model (1) coefficients is caused by a change in 
the rocket mass-inertial characteristics, speed and flight altitude. 

 

Figure 3 (Source: author) 

 

Figure 4 (Source: author) 

 

Figure 5 (Source: author) 

To substantiate the possibility of the algorithm constructing for 
determining a link that is equivalent from the point of view of the 
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selected criterion to the TCS of the rocket's motion on a certain tra-
jectory section, an experiment was conducted using the data in Fig. 
3-6 and Table 1.  

 

Figure 6 (Source: author) 

Table 1 – actuators parameters and control law coefficients 

(Source: author) 

T  𝒌𝝍 𝒌𝝍
′  𝒌𝒛

′  

s - s s/м 

0.1 1.2 23.74 19.89 -0.858 

 
For the test signal fz(t) in the form of four rectangular pulses, 

as a result of finding the criterion (6) minimum by the Levenberg-

Marquardt method in the four-dimensional space of quantities a, 

a, az, az using relations (3, 4), the ТF of the form (2) are deter-
mined: 

 𝑤𝜓𝑓(𝑠) =
𝜓(𝑠)

𝑓𝑧(𝑠)
=

𝑞𝑚0

𝑠5+∑ 𝑞𝑘⋅𝑠𝑘4
𝑘=0

=  

 =
11.71

𝑠5+12𝑠4=99.79𝑠3+313.9𝑠2+448.4𝑠+317.5
. (19) 

The link with TF (19) according to criterion (6) is equivalent 
to TCS (1) in the relative time interval 0…20 s. 

For the case of a test signal fz(t) in the form of pulses of a par-
abolic shape (Fig. 2), the TF of the link, which in the relative time 
interval t = 0…20 s is equivalent to the TCS (1), is determined ac-
cording to the searching results for the minimum of criterion (6) and 
relations (3, 4): 

 𝑤𝜓𝑓(𝑠) =
𝜓(𝑠)

𝑓𝑧(𝑠)
=

𝑞𝑚0

𝑠5+∑ 𝑞𝑘⋅𝑠𝑘4
𝑘=0

=  

 =
0.072𝑠3+0.86𝑠2+7.2𝑠+11.85

𝑠5+12𝑠4=99.97𝑠3+317.4𝑠2+453.1𝑠+328.0
. (20) 

Calculations show that the criterion R (6) may have local ex-
tremes, the coordinates of which depend on their initial values and 

two-sided restrictions of the arguments a, a, az, az, while the 
minimum value of R for the given data example in the local ex-
tremes is the same. 

As can be seen from the comparison of TF (19) and (20), the 
difference between the denominator coefficients, which is a conse-
quence of different test signals, for this example data does not ex-
ceed 3.5%, while the difference in the estimates of the stability mar-
gin on the roots plane of the characteristic polynomial is about 2%. 

The following values are given at the algorithm input for de-
termining the TF of the link, which is equivalent to the time-varying 
missile control system in one plane on the selected trajectory sec-
tion, taking into account the actuator inertia and the disturbed mass 
center motion: 

- constant coefficients , T of the model (1), which quantita-
tively characterize the actuator speed; 

- tables of time dependences of the coefficients a(t), a(t), 

az(t), az(t); 
- the beginning and end moments of the selected trajectory sec-

tion; 

- the control law coefficients kz, k, k, calculated for mid-
point of the selected trajectory section; 

- test signals for excitation of the transient process. 
 To the algorithm output are placed the TF coefficients of the 

kind (2) for the coordinate x1=.  
The main steps are as follows: 

- approximation of tabulated coefficients a(t), a(t), az(t), 

az(t) by polynomials; 
- numerical solution of equation (5), which follows from model 

(1), using approximation polynomials and the selected test signal to 
excite the transient process; 

- selection of the procedure for analytical solution of equation 
(5) or (15) depending on the test signal and possible values of the 

quantities a, a, az, az, which can be equivalent to the variable 

coefficients a(t), a(t), az(t), az(t) in equation (1); 
- finding the minimum of the criterion R (6) by the Levenberg-

Marquardt method, by using the appropriate procedure, for exam-
ple, Minimize in the Mathcad software environment; 

- calculation of the ТF coefficients according to the relations 
(3, 4). 

Based on the ТF (19, 20) by methods of the theory of linear 
stationary systems, it is possible to obtain estimates of such dynamic 
characteristics of ТСS as accuracy indicators, frequency character-
istics, type of transient process and its duration, as well as to deter-
mine the influence of the actuator inertia on these characteristics. 
The presence of these indicators can be used to make technical de-
cisions in the process of ТСS’s designing. 

Conclusions 

A methodological support for an algorithm constructing for de-
termining the transfer function of a link, which on a selected trajec-
tory section is equivalent to a linear time-varying control system for 
the movement of a rocket in one plane, taking into account the ac-
tuator inertia and the disturbed motion of the mass center, has been 
developed.  

In particular, the following are proposed: 
- test signal variants for the transient process excitation in order 

to obtain a sufficient amount of data for assessing the dynamic char-
acteristics of the time-varying system; 

- formulas for the analytical solution of the link differential 
equation using the mathematical apparatus of the Laplace transform 
for the test signal in the form of a sequence of rectangular and par-
abolic pulses, considering the initial conditions, which are updated 
when the waveform changes; 

- a criterion for quantitatively assessing the difference between 
the output signals of a time-varying system and an equivalent link, 
the coordinates of the extreme point of which, found by the Leven-
berg-Marquardt method, are the arguments of the transfer function 
coefficients. 

The novelty of the work lies in taking into account the actuator 
inertia and the disturbed motion of the mass center when developing 
a methodological support for an algorithm constructing for deter-
mining a stationary link, which, in terms of dynamic characteristics, 
is equivalent to the ТСS movement of a rocket on a certain trajec-
tory section. 

Practical significance lies in supplementing the methodologi-
cal base for designing time-varying systems by using the mathemat-
ical apparatus of stationary systems in terms of assessing dynamic 
characteristics, namely the stability margin on the plane of the char-
acteristic polynomial roots, the accuracy of disturbance compensa-
tion, the type of transient process and its duration, as well as the 
amplitude-frequency and phase-frequency characteristics. 
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