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Physics-Informed Neural Networks in Aerospace: 

A Structured Taxonomy with Literature Review 

Yurii Tkachov , Oleh Murashko  

Purpose. This study aims to develop a structured four-tier taxonomy that systematically organizes aerospace 
engineering tasks suitable for the application of Physics-Informed Neural Networks (PINNs), while validating this 
classification through a literature review and identifying opportunities for future research. Design / Method / 
Approach. The methodology involves grouping tasks into four distinct tiers—Physical Modeling, Dynamic 
Analysis, Functional Assessment, and System-Level Assessment—based on their physical, operational, and 
systemic characteristics. This framework is subsequently populated with real-world examples derived from the 
analysis of 145 peer-reviewed studies. Findings. The reviewed literature confirms a balanced distribution of 
PINNs applications across all tiers. Contrary to initial assumptions, studies were identified even in areas previously 
presumed underrepresented, such as acoustic modeling, optical simulations, and environmental impact 
assessment. This outcome reveals the broader applicability of PINNs and calls for a reassessment of current 
assumptions regarding underexplored domains. Theoretical Implications. The proposed taxonomy offers a 
coherent framework for structuring interdisciplinary PINNs applications by integrating physics-based modeling 
with machine learning across aerospace engineering contexts. Practical Implications. It provides engineers and 
researchers with a practical roadmap for selecting PINNs methods tailored to specific problem types, potentially 
improving computational efficiency and enhancing predictive accuracy in aerospace design and analysis. 
Originality / Value. The study’s originality lies in its empirically validated, four-tier taxonomy that synthesizes the 
fragmented body of literature on PINNs in aerospace, offering a unified perspective for researchers and 
practitioners. Research Limitations / Future Research. While the taxonomy covers a wide range of existing 
applications, future studies should consider extending it with new tiers—particularly related to manufacturing-
aware modeling—and pursue methodological standardization to ensure reproducibility and scalability. Article 
Type. Review. 
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Мета. Це дослідження має на меті розробити структуровану чотирирівневу таксономію, яка систематично 
впорядковує задачі аерокосмічної інженерії, придатні для застосування Physics-Informed Neural Networks 
(PINNs), водночас забезпечуючи верифікацію такої класифікації через огляд літератури та виявлення 
потенціалу для подальшого розвитку. Дизайн / Метод / Підхід. Методологія ґрунтується на групуванні 
задач за чотирма рівнями — Фізичні, Динамічні, Функціональні та Системний аналіз — відповідно до їхніх 
фізичних, операційних і системних характеристик. Після цього здійснено аналіз 145 рецензованих джерел, 
що дозволило заповнити кожну категорію реальними прикладами застосування PINNs. Результати. 
Рецензована література демонструє рівномірну представленість усіх рівнів таксономії. Наявність 
підтверджених застосувань PINNs навіть у раніше недооцінених напрямах, зокрема акустиці, оптиці та 
екологічному моделюванні, свідчить про широку сферу охоплення методу та вимагає переосмислення 
поточних уявлень про межі його застосування. Теоретичне значення. Запропонована таксономія надає 
інструмент систематизації міждисциплінарних застосувань PINNs, інтегруючи фізичне моделювання з 
машинним навчанням у контексті складних інженерних задач. Практичне значення. Таксономія 
забезпечує дослідників практичним орієнтиром для вибору PINNs залежно від типу задачі, підтримуючи 
ефективність обчислень та підвищуючи якість прогнозування у процесах аналізу та проєктування в 
аерокосмічній галузі. Оригінальність / Цінність. Унікальність роботи полягає в побудові та емпіричній 
перевірці цілісної чотирирівневої таксономії застосування PINNs, що дозволяє системно охопити актуальні 
дослідження у галузі, замість фрагментарного представлення, притаманного попереднім оглядам. 
Обмеження дослідження / Майбутні дослідження. Незважаючи на повноту охоплення, подальші 
дослідження мають бути спрямовані на інтеграцію нових рівнів, зокрема пов’язаних із виробничими 
параметрами, а також на стандартизацію методологій для забезпечення відтворюваності та 
масштабованості PINNs. Тип статті. Огляд. 
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Aerospace engineering faces complex modeling challenges, 
from turbulent flows around hypersonic wings to thermal loads on 
satellite structures. Conventional methods, such as finite elements 
or computational fluid dynamics, provide accuracy but demand sig-
nificant computational resources and time, slowing down design 
phases. Physics-Informed Neural Networks (PINNs) offer an alter-
native, embedding physical equations, like Navier–Stokes or con-
servation laws, directly into the loss function of neural networks, 
enabling faster results while maintaining physical fidelity. 

Physics-Informed Neural Networks (PINNs) occupy a distinct 
position within the framework of Scientific Machine Learning 
(SciML), falling under the category of Physics-Informed Methods. 
They are distinguished by their integration of differential equations 
into the loss function of a neural network, ensuring a rigorous incor-
poration of physical laws compared to other approaches, such as 
Physics-Guided Neural Networks (PGNNs), which utilize physics 
in a less formal manner. In contrast to Physics-Constrained Neural 
Networks (PCNNs), PINNs focus specifically on differential equa-
tions rather than broader physical constraints, such as energy con-
servation. As a subset of Neural ODE/PDE Solvers, PINNs special-
ize in solving differential equations, though not all solvers qualify 
as PINNs, as some may rely entirely on data-driven techniques. 

In the broader context of SciML, PINNs constitute a formal-
ized segment of Physics-Augmented Machine Learning, explicitly 
leveraging physical equations. They can serve as Surrogate Models, 
approximating complex simulations, but not all surrogate models 
are PINNs, as many do not incorporate physics. Similarly, PINNs 
may form components of Hybrid Physics-AI Models or Digital 
Twins, yet these categories are more expansive, encompassing 
methods that do not necessarily rely on neural networks or differen-
tial equations. Thus, PINNs represent a specialized tool that com-
bines the rigor of physical principles with the flexibility of machine 
learning, carving out a niche within the SciML classification. 

Therefore, Physics-Informed Neural Networks (PINNs) repre-
sent an innovative approach that integrates physical laws, expressed 
as differential equations, into the training of neural networks by in-
corporating these equations into the loss function, ensuring physi-
cally consistent predictions even with limited data (Karniadakis et 
al., 2021; Farea et al., 2024; Meng & Karniadakis, 2020;). This 
method enables PINNs to model complex phenomena, such as tur-
bulence or thermal loads, with high accuracy, making them valuable 
for resource-intensive fields like aerospace engineering (Raissi et 
al., 2019; Cai et al., 2021; Faroughi et al., 2024; Zhao et al., 2024). 
By embedding physics directly, PINNs offer a powerful alternative 
to traditional computational methods, yet their broad application re-
quires a systematic framework to identify optimal use cases. In the 
methodology section, we detail our approach to developing a tax-
onomy that organizes aerospace tasks suitable for PINNs, leverag-
ing literature to validate and refine this classification.  

To provide a more comprehensive explanation of the capabili-
ties of Physics-Informed Neural Networks (PINNs), attention will 
be given to the content of the referenced sources. In a review article 
by Karniadakis et al. (2021), a systematic analysis of approaches to 
integrating fundamental physical laws into artificial intelligence 
models is presented. Particular emphasis is placed on the application 
of these integrated models to address complex engineering prob-
lems. The article primarily focuses on PINNs, a class of neural net-
works that incorporate physical laws, such as differential equations, 
directly into their training process. This approach enables models to 
adhere to fundamental physical constraints even in the presence of 
incomplete or inaccurate data. Specifically, PINNs can be effec-
tively utilized for modeling complex aerodynamic processes, heat 
transfer phenomena, structural mechanics problems, and other 
physical phenomena. The authors conclude that physics-informed 
machine learning, particularly PINNs, represents a highly promis-
ing direction for addressing a wide range of complex scientific and 
engineering challenges. 

In a review study by Farea et al. (2024), a group of researchers 
conducted an in-depth analysis of PINNs as an interdisciplinary ap-
proach that integrates machine learning techniques with fundamen-
tal physical laws to tackle pressing scientific and technical prob-
lems. The authors focused on elucidating the essence of PINNs, 
thoroughly examining their foundational concepts and diverse ar-
chitectures. Particular attention was devoted to the methodology of 
integrating physical principles into the neural network training 

process and identifying key challenges hindering the further devel-
opment and broader adoption of this promising technology. Sum-
marizing their findings, the authors concluded that PINNs serve as 
a powerful tool, effectively combining the advantages of data-
driven machine learning with a deep understanding of physical pro-
cesses. This enables the resolution of complex problems even under 
conditions of limited experimental data. However, several existing 
challenges were identified, including the high computational cost of 
training, the scarcity of high-quality data for certain applications, 
and the complexity of integrating sophisticated physical models. 
The authors emphasized the need for further research to overcome 
these obstacles and expand the scope of PINNs’ applications across 
various scientific and engineering disciplines. 

In an article by Meng & Karniadakis (2020), the authors ex-
tended the PINNs framework by proposing Multi-fidelity PINNs 
(MPINNs). The primary objective of the study was to develop a 
composite neural network capable of leveraging a combination of 
low- and high-fidelity data to approximate complex functions and 
solve inverse problems associated with partial differential equa-
tions. The enhanced architecture integrates the strengths of physical 
modeling with the capabilities of machine learning on data of vary-
ing quality. The proposed methods hold significant potential for ap-
plications in aerospace engineering, where high-fidelity experi-
mental data are often limited, yet there is a critical need to account 
for fundamental physical laws in modeling complex aerospace sys-
tems and processes. The authors demonstrated that the developed 
composite neural network and MPINNs can effectively learn from 
a limited volume of high-fidelity data supplemented by a larger 
amount of low-fidelity data. This enables high accuracy in function 
approximation and the resolution of inverse problems related to par-
tial differential equations. The proposed approach opens prospects 
for reducing reliance on costly experimental studies and enhancing 
the efficiency of modeling complex physical phenomena across var-
ious scientific and technical domains. 

The primary objective of the study by Raissi et al. (2019) was 
to explore the feasibility of directly incorporating physical princi-
ples into the neural network training process to effectively solve 
problems governed by nonlinear differential equations. The key el-
ement of the presented research is the concept of Physics-Informed 
Neural Networks (PINNs). In their conclusions, the authors under-
scored that PINNs are a highly effective tool for addressing both 
forward (predicting system behavior given known parameters) and 
inverse (determining unknown system parameters based on obser-
vations) problems described by nonlinear differential equations. 

In an article by Cai et al. (2021), the authors investigated the 
potential of PINNs for solving heat transfer problems, which are 
traditionally considered challenging for numerical methods. These 
problems include cases with incomplete boundary conditions, lim-
ited experimental data, or complex physical behavior. Specifically, 
in the context of forced and mixed convection problems, PINNs 
demonstrated a significant ability to reproduce temperature and 
flow velocity distributions, even under conditions of incomplete 
boundary information. Notably, the developed models maintained 
stability and exhibited high predictive accuracy while relying on a 
limited amount of input data. Furthermore, the effectiveness of 
PINNs was validated for solving classical two-phase Stefan prob-
lems related to phase transition processes, such as melting or solid-
ification. In these scenarios, the models accurately predicted not 
only the position of the moving phase boundary but also the tem-
perature profiles in each phase. This capability is highly valuable, 
as traditional numerical methods often encounter significant diffi-
culties in modeling such problems. Additionally, successful appli-
cations in analyzing thermal processes in power electronics were 
presented, highlighting the growing maturity of the methodology 
and its readiness for practical implementation in addressing press-
ing engineering challenges. 

In a scientific paper by Faroughi et al. (2024), a group of re-
searchers reviewed four primary approaches to integrating funda-
mental physical knowledge into artificial neural networks: Physics-
Guided Neural Networks (PgNNs), Physics-Informed Neural Net-
works (PiNNs), Physics-Encoded Neural Networks (PeNNs), and 
Neural Operators (NOs). The authors analyzed the application of 
these methods in the context of scientific computing, particularly in 
critical domains such as fluid and solid mechanics. Although the ar-
ticle’s primary focus was not exclusively on the aerospace sector, 
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the authors highlighted the significant relevance of the discussed 
methods for aerospace engineering. Specifically, they noted their 
potential for modeling fluid and solid mechanics, which is critically 
important in the design and analysis of various aerospace systems 
and components. Summarizing their findings, the authors con-
cluded that integrating physical knowledge into neural networks 
significantly enhances the accuracy and reliability of developed 
models, particularly in scenarios with limited experimental data. 

The study by Zhao et al. (2024) focused on analyzing advance-
ments in PINNs, with an emphasis on their application to modeling 
complex hydrodynamic processes. The authors concluded that 
PINNs demonstrate significant potential for addressing complex 
hydrodynamic problems. However, several challenges were identi-
fied, including ensuring model accuracy, computational efficiency, 
and the ability to generalize results to new, previously unseen sce-
narios. The authors underscored the need for further intensive re-
search to overcome these barriers and develop standardized bench-
mark problems specifically designed to evaluate the effectiveness 
of PINNs in complex hydrodynamic scenarios. 

However, the practical application of PINNs in flight vehicle 
design remains fragmented — researchers demonstrate successes in 
specific tasks like aerodynamics, structural integrity, or control sys-
tems, but lack a consistent classification of effective application do-
mains. This absence of systematic organization raises questions: 
which physical, dynamic, functional, or system-level tasks in aero-
space design are best suited for PINNs, and where do the greatest 
research gaps lie? 

This article addresses these challenges by proposing a compre-
hensive four-tier taxonomy of PINNs applications in aerospace en-
gineering. We group tasks into categories—Physical (aerodynam-
ics, mechanics, thermodynamics), Dynamic (trajectories, ballistics, 
motion dynamics), Functional (control, op-
timization, identification, prediction), and 
System Analysis (validation, safety analy-
sis, environmental impact). Each category 
is illustrated with examples from peer-re-
viewed publications, showing where 
PINNs have been successfully applied and 
where they remain underutilized, particu-
larly in acoustic, optical, and environmental 
modeling. This first-of-its-kind taxonomy 
provides a clear roadmap for engineers and 
researchers, aids in optimizing method se-
lection for specific tasks, and outlines direc-
tions for future research. 

Aim and Objectives 

The primary aim of this study is to 
conduct a comprehensive and systemati-
cally structured literature review on the ap-
plications of Physics-Informed Neural Net-
works (PINNs) within aerospace engineering. This review employs 
a four-tier taxonomy – categorizing aerospace engineering tasks 
into Physical Modeling, Dynamic Analysis, Functional Evaluation, 
and System-Level Assessment – as a framework to classify and an-
alyze existing research. By identifying key research directions, re-
ported implementations, and recurring methodological challenges, 
this study aims to delineate the current state of research on PINNs 
in aerospace contexts and to outline substantiated directions for fur-
ther investigation. To achieve this aim, the study pursues the follow-
ing specific objectives. 

1. To develop a four-tier taxonomy that classifies aerospace en-
gineering tasks into four categories—Physical Modeling, Dynamic 
Analysis, Functional Evaluation, and System-Level Assessment—
based on physical, operational, and systemic characteristics, thereby 
establishing a structured framework for analyzing the applicability 
of Physics-Informed Neural Networks (PINNs). 

2. To perform a structured literature review of peer-reviewed 
studies by assigning real-world examples to each taxonomic cate-
gory, in order to validate the taxonomy and to assess the extent and 
maturity of PINNs applications in aerospace engineering. 

3. To identify research gaps by determining underrepresented 
or unexplored application domains, including but not limited to 
acoustic modeling, optical simulations, and environmental impact 
assessment. 

4. To derive methodological and application-oriented insights 
that support the selection and implementation of PINNs for specific 
aerospace tasks, with emphasis on the integration of physics-based 
modeling and machine learning. 

5. To synthesize the findings into a unified analytical frame-
work that consolidates fragmented research on PINNs applications 
in aerospace engineering, enabling comparative assessment and 
promoting further optimization of computational and predictive per-
formance. This structured approach ensures that the taxonomy not 
only serves as a theoretical contribution but also as a practical tool 
for advancing the application of PINNs in aerospace engineering, 
guiding both current practices and future investigations. 

Methodology 

This study implements a reproducible procedure for construct-
ing a four-tier taxonomy of Physics-Informed Neural Networks 
(PINNs) applications in aerospace engineering. The methodology 
comprises three sequential stages. 

1. Taxonomy Development 
Based on a comprehensive review of aerospace engineering 

problems, four hierarchical categories were defined for the potential 
application of PINNs (see Figure 1): 

– Physical Modeling (e.g., aerodynamics, heat transfer, 

structural strength), 

– Dynamic Analysis (e.g., trajectory computation, ballistics, 

flight dynamics), 

– Functional Assessment (e.g., control systems, operating-

mode optimization, parameter identification), 

– System-Level Analysis (e.g., model validation, reliability 

and safety assessment, environmental impact). 

Classification criteria for each category took into account the 
governing physical conditions, the level of integration into complex 
technical systems, and the nature of PINNs-solvable problems. 
Tasks not matching any of these categories were excluded. The pro-
posed four‐tier taxonomy is presented in Table 1. Each tier in the 
taxonomy is further subdivided into task-specific layers, forming a 
structured three-layer hierarchy within each of the four tiers. A de-
tailed breakdown of tasks classified under each Tier is presented in 
Tables 2–5. 

2. Compilation of the Literature Corpus 
Primary sources were selected via keyword queries derived 

from the developed taxonomy — using English terms (“Physics-
Informed Neural Networks”, “PINNs”, “aerospace engineering”) 
— in the Scopus, Web of Science and other databases. Priority was 
given to articles published in peer-reviewed journals during 2019–
2025 that provided detailed implementations of PINNs for aero-
space or contextually analogous problems. Conference abstracts, re-
view papers without original results, and publications lacking tech-
nical specificity were excluded. 

3. Systematic Content Analysis 
Each selected publication underwent a structured content anal-

ysis along four dimensions: 
– Nature of the problem studied — identification of the spe-

cific physical or engineering challenge addressed, emphasizing 

 

Figure 1 – Chart of the Four-Tier Taxonomy of PINNs Applications in Aerospace Engineering 

(Source: authors) 
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mathematical formulation and application context. 

– PINNs implementation characteristics — examination of 

the network configuration, including the governing equations in-

corporated, network architecture, and training strategy. 

– Relevance assessment for aerospace engineering — eval-

uation of how the addressed problem, irrespective of its original 

domain, aligns with aerospace-specific requirements. 

– Authors’ conclusions — extraction of key findings, stated 

limitations, and proposed directions for future research. 
This approach ensures a consistent evaluation of each research 

case, reveals prevailing application scenarios for PINNs, and high-
lights opportunities for their further integration into aerospace engi-
neering. 

Table 1 - Overview of the Four-Tier Taxonomy of PINNs 

Applications in Aerospace Engineering (Source: authors) 

Tier 1.  
Physical Modeling 

Tier 2.  
Dynamic Analysis 

Tier 3.  
Functional As-
sessment 

Tier 4.  
Systems-Level 
Analysis 

Aerodynamic Prob-
lems 

Ballistic and Trajec-
tory Problems 

Control and Naviga-
tion Tasks 

Model testing and 
validation 

Structural Problems Motion-Dynamics 
Problems 

Optimization Tasks Safety-oriented 
physical condition 
modeling 

Thermal Problems Rigid-Body Motion 
Dynamics 

Identification Tasks Subsystem interac-
tion modeling 

Acoustic Problems  Prediction Tasks Environmental vari-
able prediction 

Electromagnetic 
Problems 

   

Optical Problems    
Chemical and Ther-
mochemical Prob-
lems 

   

Material–Environ-
ment Interaction 
Problems 

   

Multicomponent-
System Problems 

   

 

Table 2 — Tasks (Level 3) within Tier 1: “Physical Modeling” by 

Category (Level 2) with Examples (Source: authors) 

Task (Level 3) Examples 

Aerodynamic Problems (Level 2) 
Air-drag computation estimation of aerodynamic drag forces acting on 

bodies in flow 
Lift-force calculation prediction of lift generated by wings or airfoils under 

given flow conditions 
Turbulence modeling simulation of turbulent flow structures and eddy vis-

cosity distributions 
Shock-wave calculation resolution of discontinuities and pressure jumps in 

high-speed flows 
Flow around a wing detailed modelling of pressure and velocity fields 

adjacent to lifting surfaces 
Flow-separation modelling analysis of boundary-layer detachment from sur-

faces, prediction of stall onset and reattachment 
Aerodynamic-moment compu-
tation 

roll, pitch, yaw moments, determination of moments 
induced by pressure distributions 

Interaction with control sur-
faces 

flaps or ailerons, simulation of flow changes due to 
movable elements 

Supersonic and hypersonic 
flow analysis 

high-speed vehicles, capture of compressibility and 
high-enthalpy effects for 

Structural Problems (Level 2) 
Stress–strain analysis in struc-
tures 

prediction of internal stresses and deformations un-
der load 

Vibration and resonance mod-
eling 

identification of natural frequencies and mode 
shapes 

Strength and stiffness calcula-
tion 

assessment of load-bearing capacity and rigidity 

Material failure simulation modelling of crack initiation and propagation 
Fatigue analysis evaluation of structural durability under cyclic load-

ing, lifetime prediction under repeated stresses 
Contact mechanics between 
components 

joint interfaces, analysis of stress transfer in con-
nections 

Elastic and plastic deformation 
computation 

for non-linear materials, capture of permanent de-
formations 

Stability assessment buckling under compression, determination of criti-
cal loads for loss of equilibrium 

Table 2 (continued) 

Task (Level 3) Examples 
Thermal Problems (Level 2) 
Engine heat-transfer calcula-
tion 

simulation of convective and conductive heat fluxes 
in propulsion systems 

Thermal expansion modeling prediction of deformation due to temperature 
changes 

Cabin thermal-environment 
analysis 

evaluation of temperature distribution for crew com-
fort and equipment safety 

Acoustic Problems (Level 2) 
Engine noise prediction simulation of sound-pressure levels generated by 

propulsion systems 
Cabin acoustic field modeling analysis of sound-wave propagation and attenua-

tion inside compartments 
Electromagnetic Problems (Level 2) 
Antenna-radiation calculation prediction of far-field electromagnetic emissions 
Engine electromagnetic-field 
modeling 

simulation of fields in electric or hybrid propulsion 
units 

Optical Problems (Level 2) 
Material optical-property com-
putation 

evaluation of refractive index, absorption, and scat-
tering coefficients 

Navigation-optics simulation modelling of lens systems and imaging perfor-
mance 

Chemical and Thermochemical Problems (Level 2) 
Combustion-reaction modeling fuel burn in jet engines, resolution of reaction kinet-

ics and heat release 
High-temperature thermo-
chemical process calculation 

atmospheric re-entry, prediction of gas-phase 
chemistry and energy exchange 

Material–Environment Interaction Problems (Level 2) 
Corrosion-process modeling 
under atmospheric conditions 

simulation of oxide-layer growth and material deg-
radation 

Radiation-damage analysis for space applications, evaluation of material prop-
erty changes under ionizing radiation 

Multicomponent-System Problems (Level 2) 
Fluid–gas interaction in fuel 
systems 

modelling of two-phase flows and mixing phenom-
ena 

Multicomponent-flow dynam-
ics 

fuel–oxidizer mixtures, prediction of mixture behav-
ior under varying thermodynamic states 

 

Table 3 — Tasks (Level 3) within Tier 2: “Dynamic Analysis” by 

Category (Level 2) with Examples (Source: authors) 

Task (Level 3) Examples 

Ballistic and Trajectory Problems (Level 2) 
Flight-path simulation computation of rocket, projectile, or UAV trajectories 

under gravity, drag, and other forces 
Ballistic-coefficient analysis determination of shape and atmospheric-condition 

effects on trajectory 
Space-flight trajectory model-
ing 

simulation of satellite or spacecraft motion in gravi-
tational fields 

Motion-Dynamics Problems (Level 2) 
Fluid-body interaction in mo-
tion 

parachute descent or vehicle, prediction of drag-in-
duced dynamics 

Particle-dynamics analysis study of particle motion in force fields, electromag-
netic or gravitational 

Rigid-Body Motion Dynamics (Level 2) 
Drag-induced trajectory simu-
lation 

descent paths of parachutes under varying drag co-
efficients 

Hydrodynamic-load modeling force distributions on vehicles in unsteady currents 
Attitude-dynamics prediction rotational response of bodies subjected to fluid-in-

duced moments 

Table 4 — Tasks (Level 3) within Tier 3: “Functional Assessment” by 

Category (Level 2) with Examples (Source: authors) 

Task (Level 3) Examples 

Control and Navigation Tasks (Level 2) 
Flight-control algorithm devel-
opment 

design of control laws for stability and maneuvering 

Flight-dynamics modeling simulation of closed-loop aircraft response 
Trajectory-optimization algo-
rithms 

course-correction strategies for aerial vehicles, mini-
mization of fuel or time via optimal control 

In-flight behavior modeling for 
navigation enhancement 

prediction of vehicle states for guidance systems 

Optimization Tasks (Level 2) 
Wing-shape optimization for drag reduction, identification of aerodynamic ge-

ometries using driven solvers 
Flight-path optimization for fuel efficiency, optimal trajectory generation un-

der mission constraints 
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Table 4 (continued) 

Task (Level 3) Examples 

Identification Tasks (Level 2) 
Parameter estimation from ex-
perimental data 

inverse problem solving to infer model parameters 

Fault diagnostics in systems detection and localization of anomalies via data-
driven models 

Prediction Tasks (Level 2) 
Material-degradation forecast-
ing 

remaining-useful-life estimation under operational 
loads 

System-behavior prediction in 
extreme conditions 

extrapolation of performance beyond tested re-
gimes 

Structural-lifetime prediction time to failure or maintenance need, cycle-based 
durability assessment 

Aerodynamic-characteristic 
prediction under variable con-
ditions 

altitude or speed changes 

Thermal-load forecasting during atmospheric re-entry, prediction of heat-flux 
time-histories 

 

Table 5 — Tasks (Level 3) within Tier 4: “Systems-Level Analysis” 

by Category (Level 2) with Examples (Source: authors) 

Task (Level 3) Examples 
Model testing and validation (Level 2) 
Physical-field reconstruction pressure and stress fields from wind-tunnel or struc-

tural tests 
Benchmark consistency verifi-
cation 

comparison of PINNs outputs with CFD/FEA (Com-
putational Fluid Dynamics / Finite Element Analysis) 
results 

Error and sensitivity quantifica-
tion 

approximation errors and sensitivity to boundary/ini-
tial conditions 

Safety-oriented physical condition modeling (Level 2) 
Critical-state simulation stress concentrations or thermal overload preceding 

failure 
Operational-regime identifica-
tion 

PINNs-based detection of high-risk conditions 
within safe limits 

Parametric safety modeling variation of safety margins under uncertain loads or 
temperatures 

Subsystem interaction modeling (Level 2) 
Coupled multi-domain simula-
tion 

joint aerodynamic–structural PINNs models 

Thermo-mechanical interac-
tion modeling 

simultaneous loading and heating effects in compo-
nents 

Subsystem integration unified PINNs framework for interacting sub-models 
Environmental variable prediction (Level 2) 
Pollutant-field approximation transport-equation-driven concentration in flow envi-

ronments 
Acoustic-field prediction near-field engine noise distributions 
Environmental-impact simula-
tion 

prediction of variables under modified boundary or 
operational conditions 

 
Despite the structured approach adopted in this study, several 

limitations must be acknowledged. First, the taxonomy itself, while 
developed to comprehensively cover the principal categories of aer-
ospace-related PINNs applications, cannot claim to be exhaustive. 
The domain of flight systems is inherently open-ended, with contin-
ually evolving configurations, mission profiles, and interdiscipli-
nary problem formulations that may give rise to new application 
classes beyond the current classification. 

Second, the literature review was necessarily constrained by 
practical considerations. Although the time window of 2019–2025 
was selected to reflect the most active and relevant phase of PINNs 
development, it excludes earlier conceptual works and any recent 
studies that may not yet be indexed. Moreover, the taxonomy-driven 
search strategy, while systematic, may fail to capture publications 
whose titles and abstracts do not explicitly reflect the underlying 
physical or methodological relevance. As such, some relevant con-
tributions may have been unintentionally omitted due to limitations 
in metadata exposure or terminological inconsistency. 

These limitations do not diminish the validity of the taxonomy, 
or the findings derived from the literature analysis but should be 
considered when interpreting the scope and generalizability of the 
results. 

Publications Related to Tier 1: Physical Modeling 

This section reviews studies where Physics-Informed Neural 
Networks (PINNs) have been applied to model fundamental 

physical processes relevant to aerospace engineering. These tasks 
involve the solution of differential equations that govern fields such 
as pressure, temperature, stress, or electromagnetic intensity, typi-
cally under complex boundary and initial conditions. 

The focus is on how PINNs are used to capture these phenom-
ena with physical fidelity—without reliance on mesh-based dis-
cretization—and how they incorporate domain knowledge directly 
into the learning process. By examining representative works, the 
review highlights both established practices and unresolved chal-
lenges in applying PINNs to core physical modeling tasks. 

Aerodynamic Problems 

Muralidhar et al. (2019) proposed a methodology based on 
Physics- guided Deep Neural Networks (PhyDNNs), a subclass of 
Physics-Informed Neural Networks (PINNs), for modeling drag 
force on particles in moving fluids. By integrating physical priors 
into the network structure and utilizing aggregated supervision dur-
ing the training process, their approach enhanced drag force predic-
tion accuracy by 8.46% compared to traditional models, while 
maintaining physical consistency of the results. The findings 
demonstrate the effectiveness of PhyDNNs for accurate and inter-
pretable modeling of complex hydrodynamic systems under limited 
data conditions, which holds significance for aerospace flow mod-
eling tasks. 

Mao at al. (2020) developed a PINN-based method for model-
ing supersonic flows governed by the Euler equations. Their re-
search focused on both forward and inverse problems, including 
flows with shock waves and expansions. The PINNs accurately re-
produced velocity and pressure fields in two-dimensional super-
sonic flows, specifically when modeling oblique shock waves and 
expansion waves, demonstrating high accuracy and physical fidelity 
even with limited data. This method confirms the effectiveness of 
PINNs for modeling complex high-speed flows in aerospace appli-
cations. 

Ang and Ng (2022) developed a PINN model for predicting 
pressure and velocity fields during airfoil flow. This model inte-
grates the Navier-Stokes equations and boundary conditions di-
rectly into the neural network's loss function. The model demon-
strates accuracy comparable to that of traditional Computational 
Fluid Dynamics (CFD) methods, yet performs computations up to 
five times faster without requiring prior simulation or experimental 
data. This work underscores the potential of PINNs as an efficient 
surrogate model for accelerating aerodynamic design in aerospace 
engineering. 

In their study, Jagtap et al. (2022) explored the application of 
PINNs and their extended version, XPINNs, for solving inverse 
problems in supersonic flows. The primary objective was to recon-
struct density, pressure, and velocity fields using limited experi-
mental data, such as density gradients obtained from Schlieren im-
ages, along with inlet and partial wall data. To achieve this, the au-
thors integrated physical laws, specifically the Euler equations, en-
tropy conditions, and positivity constraints for density and pressure, 
directly into the neural network's loss function. 

In their study, Arzani et al. (2023) developed a novel architec-
ture called BL-PINN (Boundary Layer Physics-Informed Neural 
Network). This architecture integrates perturbation theory and as-
ymptotic expansions to effectively model thin boundary layers char-
acterized by sharp gradients. BL-PINN demonstrates high accuracy 
in solving both forward and inverse problems, outperforming tradi-
tional PINNs and XPINN (eXtreme Physics-Informed Neural Net-
work). Furthermore, it enables the generation of parametric solu-
tions without the need for retraining. This approach effectively 
models boundary layer separation, thereby opening new possibili-
ties for aerodynamic design. 

Hanrahan et al. (2023) applied PINNs to model turbulent 
boundary layer flows with an adverse pressure gradient (APG) and 
over periodic hills. Their approach utilized the Reynolds-Averaged 
Navier–Stokes (RANS) equations, crucially without relying on tra-
ditional turbulence models. The PINNs accurately reproduced mean 
flow characteristics, such as shear stress and pressure, and were ca-
pable of inferring Reynolds stress fields directly, even with limited 
experimental data. While computational costs did not increase with 
rising Reynolds numbers, a reduction in accuracy was observed in 
separation zones due to data scarcity. This methodology demon-
strates the potential of PINNs for efficient modeling of turbulent 
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flows in aerodynamic analysis. 
Sun et al. (2023) implemented an approach where PINNs sim-

ultaneously perform hydrodynamic modeling and geometric airfoil 
optimization, directly incorporating the Navier–Stokes equations. 
Instead of employing traditional adjoint analysis, the authors in-
cluded shape parameters directly within the PINN's input space. 
This enabled the identification of optimal configurations without the 
need for separate optimization codes. The methodology demon-
strated high accuracy in reproducing pressure and velocity fields 
and successfully scaled from single- to multi-parameter cases. De-
spite a higher computational cost, this work highlights the signifi-
cant potential of PINNs for integrated aerodynamic shape optimiza-
tion. 

The model proposed by Yan et al. (2023) implements an inno-
vative approach for reconstructing aerodynamic fields around 
bridge structures by integrating the Navier–Stokes equations and 
passive scalar transport into a PINN framework. Input data, derived 
from flow visualizations, consists of concentration fields, which are 
then used to reconstruct velocity and pressure fields, and to compute 
lift and drag coefficients. The method's efficacy was confirmed 
through case studies of flow around a bridge deck at Reynolds num-
bers Re=1250 and Re=5000 — the results demonstrate accuracy 
comparable to classical Computational Fluid Dynamics methods. A 
key advantage of this approach is its ability to operate with indirect, 
visualization-based data, significantly reducing experimental re-
quirements and opening possibilities for analyzing objects with dif-
ficult access or high costs associated with direct modeling. Despite 
its orientation toward bridge structures, the methodology shows 
promise for application in assessing the aerodynamics of ground-
based aerospace systems, particularly launch vehicles, which are 
characterized by similar hydrodynamic and geometric conditions. 

Harmening et al. (2024) developed a PINN model for simulat-
ing turbulent flow around a DU99W350 airfoil at angles of attack 
ranging from 10° to 17.5°. This model integrated the RANS equa-
tions and boundary conditions into its loss function, with the angle 
of attack serving as an input parameter. The PINN accurately pre-
dicted pressure and velocity fields, including separation zones, out-
performing the traditional k-ω turbulence model in terms of accu-
racy, particularly during interpolation and extrapolation of angles of 
attack. Analysis revealed that accuracy was contingent on the distri-
bution of training data in high-gradient regions, such as the bound-
ary layer and stagnation point. This finding underscores the neces-
sity for labeled data to ensure generalizability in complex flow con-
ditions. 

In their study, Michek et al. (2024) proposed a methodology 
that combines PINNs with ensemble uncertainty quantification 
methods for modeling aircraft flight dynamics. This approach ac-
counts for the variability of aerodynamic parameters and environ-
mental conditions. The methodology provides accurate predictions 
of aerodynamic lift and drag coefficients, as well as flight trajecto-
ries under uncertainty, demonstrating high precision and reliability 
compared to standard methods. The results underscore the potential 
of integrating PINNs with ensemble techniques to create adaptive 
models that enhance the safety and efficiency of aerospace systems. 

In their work, Ren et al. (2024) proposed two modifications to 
PINNs for modeling steady transonic flows around a cylinder at 
high Reynolds numbers: PINN–RANS, which utilizes the Reyn-
olds-Averaged Navier–Stokes equations, and PINN–Euler, based 
on the Euler equations. To accurately reproduce boundary layers 
and shock waves without mesh-based methods, the authors incor-
porated a signed distance function, hard boundary conditions, and a 
gradient-based weighting coefficient into the loss function. The re-
sults demonstrated that PINN–RANS accurately reproduced the 
boundary layer and wake region using only local velocity data. Con-
versely, PINN–Euler proved effective in inviscid regions but was 
less suitable for boundary layer modeling, despite requiring three 
times less training time. 

The application of PINNs for optimizing the parameters of the 
k–ω turbulence model is presented in the study (Yazdani & Tahani, 
2024). The developed methodology integrates the physical equa-
tions of the model and experimental data, which enables the refine-
ment of turbulence model constants to enhance the accuracy of de-
scribing turbulent flow characteristics. Experimental validation 
demonstrated that the optimized parameters provide a superior re-
production of velocity profiles and turbulent kinetic energy, and also 

reduce discrepancies with experimental measurements compared to 
standard k–ω models. The proposed approach showcases the poten-
tial for developing more reliable turbulence models, which are crit-
ical for high-fidelity aerodynamic flow calculations in complex en-
gineering problems. 

Zhang et al. (2024) applied physics-informed neural networks 
(PINNs) for two-dimensional modeling of turbulent airflow in en-
closed spaces. Their approach integrated the Reynolds-averaged 
Navier–Stokes equations and the k–ε turbulence model, along with 
high-quality experimental data. The inclusion of this data signifi-
cantly enhanced the prediction accuracy of pressure, horizontal ve-
locity, and vertical velocity parameters by 82.9%, 59.4%, and 
70.5% respectively, compared to classical methods. The results 
demonstrate the effectiveness of combining physical equations and 
empirical data to improve the modeling of complex aerodynamic 
conditions within confined volumes. This has practical significance 
for aerospace engineering, particularly in tasks where turbulent 
flows are restricted by geometric obstacles, such as launch vehicles 
or launch pads. 

Cao et al. (2024) developed a numerical solver for modeling 
subsonic flow around airfoils by integrating PINNs with grid trans-
formation. This approach allows the problem to be mapped from 
physical space, where complex local velocity gradients exist near 
the leading edge, to a computational space with simplified geometry 
and more efficient implementation of boundary conditions. The re-
sults demonstrated accuracy comparable to a second-order finite 
volume method (FVM) scheme, with an almost order-of-magnitude 
reduction in error. The model also exhibited high efficiency in solv-
ing parametric problems, such as varying angles of attack, making 
it a flexible tool for inviscid, incompressible flows and showing  

Wassing et al. (2024) investigated the application of PINNs for 
approximating parametric solutions to steady two-dimensional Eu-
ler equations under sub- and supersonic flow conditions. Their key 
achievement lies in the implementation of an adaptive artificial vis-
cosity reduction procedure, which stabilizes network training and 
prevents non-physical solutions. This represents the first successful 
application of this concept within PINNs for complex conservation 
laws in a high-dimensional space. The proposed methodology pro-
vides accurate approximations of solutions at various Mach num-
bers without traditional discretization, effectively solving problems 
in a continuous parametric space and opening new avenues for op-
timization and sensitivity analysis in aerodynamic problems. 

In their work, Lin et al. (2025) proposed a PINN-based method 
for identifying aircraft aerodynamic parameters. This approach in-
tegrates the six-degrees-of-freedom equations of motion as physical 
constraints directly into the network architecture. The method 
demonstrated high accuracy and robustness to data noise during the 
analysis of aircraft longitudinal motion, surpassing genetic algo-
rithms and traditional neural networks in both precision and gener-
alization capabilities. The proposed approach facilitates the creation 
of efficient surrogate models without requiring detailed physical 
models, thereby simplifying the modeling of aerodynamic charac-
teristics under conditions of limited or noisy data. 

In their study, Wassing et al. (2025) developed an approach for 
modeling transonic flows around a NACA0012 airfoil using PINNs. 
This approach was augmented with an analytical sensor function to 
locally introduce artificial viscosity in shock wave regions. This in-
novation stabilized the training process and ensured accurate repro-
duction of compressional effects without the need for mesh discreti-
zation. The proposed method demonstrated an error of less than 1% 
compared to classical Computational Fluid Dynamics algorithms 
based on the finite volume method. Furthermore, it enabled the con-
struction of parametric models capable of approximating solutions 
across a wide range of angles of attack. This work confirms the po-
tential of PINNs in the context of transonic aerodynamic problems 
and facilitates their further integration into industrial environments. 

Structural Problems 

Bastek and Kochmann (2023) successfully applied PINNs to 
model small deformations in arbitrarily curved thin-walled shell 
structures. They achieved this by employing Naghdi's shell theory 
and formulating the problem in curvilinear coordinates, thereby 
eliminating the need for mesh discretization. They demonstrated 
PINNs' ability to accurately reproduce stress and strain fields, par-
ticularly in classic benchmark problems such as the Scordelis-Lo 
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roof. Notably, the weak form of the equilibrium equations proved 
more effective for solution convergence and stability. Despite chal-
lenges in training the network when using the strong form of the 
equations, especially for thin shells with numerical stiffness due to 
differing energy scales, this research highlights the significant po-
tential of PINNs as a promising alternative to traditional finite ele-
ment methods, avoiding issues like “locking” and complex mesh 
generation. 

In their study, Keshavarz et al. (2025) presented an innovative 
approach for modeling the deformation of crystalline materials. 
This involved integrating PINNs with object-oriented crystal plas-
ticity finite element (CPFE) methods. This synergy combined the 
physical fidelity of CPFE with the computational efficiency of 
PINNs, enabling rapid and accurate prediction of material mechan-
ical response across a wide range of conditions, including large de-
formations. The object-oriented architecture of the CPFE code sim-
plified the integration of complex constitutive models and numeri-
cal methods, enhancing the flexibility and scalability of simulations. 
This was confirmed by the successful reproduction of complex de-
formation mechanisms and anisotropic plasticity in crystalline 
structures, validated against experimental data. 

Khalid et al. (2024) presented a comprehensive overview of 
the applications of PINNs for modeling laminated composites. In 
their work, they classified and analyzed the effectiveness of various 
PINN approaches (traditional, Theory-Constrained, k-space, opti-
mal, and discrete) in addressing problems in composite mechanics. 
The study highlighted the high accuracy of PINNs in reproducing 
the mechanical behavior of composites, particularly noting k-space 
PINNs for their ability to leverage spectral representations for vi-
brational characteristics and discrete PINNs for efficiently decou-
pling multi-physics problems into modular sub-networks. This 
modularity significantly reduces computational costs without sacri-
ficing accuracy. The research underscores the potential of PINNs to 
revolutionize the analysis of composite materials by integrating 
physical laws into neural network structures, while also pointing to 
the necessity for further research to overcome challenges related to 
data scarcity, high computational demands, and complex boundary 
conditions. 

Niu et al. (2023) developed an innovative methodology for 
modeling large-deformation plasticity, based on PINNs. Their ap-
proach directly integrates a rate-independent elastoplastic model 
with isotropic hardening into the PINN structure, effectively ad-
dressing complex problems where traditional mesh-based methods 
have limitations. The study confirmed the model's ability to accu-
rately predict stress and strain distributions under large plastic de-
formations without the need for mesh discretization, demonstrating 
its versatility and reliability in adapting to various loading condi-
tions. This opens new possibilities for material analysis, as the inte-
gration of physical laws into neural networks reduces the reliance 
on extensive experimental data and enhances prediction accuracy. 

In a multidisciplinary study (Ramezankani et al, 2025) pre-
sented an advanced Physics-Informed Deep Operator Network (PI-
DON) model, representing a significant advancement for optimiz-
ing highly nonlinear systems, particularly in aviation composite 
processing technologies. The authors' achievement lies in integrat-
ing nonlinear decoders, curriculum learning, and domain decompo-
sition, which enabled PIDON to effectively handle numerous input 
functions and high nonlinearity, outperforming traditional 
DeepONets. This innovative architecture provides “zero-shot” pre-
diction with accuracy two orders of magnitude higher and reduces 
the maximum temperature prediction error in nonlinear regions 
from 6.1∘C to 2.3∘C. By combining process modeling with material 
science characteristics, PIDON demonstrates high generalizability 
and predictive accuracy without retraining for new configurations, 
making it an exceptionally valuable tool for accelerating the design 
and optimization of composite processing. 

Singh et al. (2024) investigated the application of PINNs to 
solve a one-dimensional solid mechanics problem, modeling the 
mechanical properties of a prismatic cantilever beam (helicopter 
blade) under triangular loading. The authors demonstrated that 
PINNs significantly outperform traditional artificial neural net-
works (ANNs) and fourth-order differential equation analytical so-
lutions in terms of accuracy, stability, and computational efficiency. 
Integrating physical laws into the network's loss function allows 
PINNs to accurately predict deflections and internal stresses without 

complex numerical discretization. This makes them a promising 
tool for aerospace engineering, where reducing computational costs 
while maintaining high accuracy is essential. 

Xu et al. (2023) developed an innovative approach for solving 
inverse problems in structural mechanics by employing PINNs with 
transfer learning. Their work aimed to reconstruct external loads on 
engineering structures from limited displacement data in linear elas-
ticity and hyperelasticity problems. The use of multi-task learning 
with uncertainty weighting allowed for effective resolution of these 
inverse problems, even with noisy and incomplete data. Thanks to 
transfer learning, the model significantly reduces adaptation time to 
new loading conditions or geometries, making it a highly efficient 
and flexible tool for identifying loads and assessing stress-strain 
states in engineering applications. 

Yan et al. (2022) introduced a novel computational framework 
that integrates PINNs with the Extreme Learning Machine (ELM) 
method for analyzing composite structures, specifically plates and 
shells. Their objective was to develop an efficient approach for solv-
ing forward linear elasticity problems that bypasses traditional mesh 
discretization. This was achieved by directly embedding the differ-
ential equilibrium equations and boundary conditions into the net-
work's training process. Numerical experiments confirmed the mod-
el's high accuracy in predicting the stress-strain state of composites, 
including structures with variable stiffness, while the use of ELM 
significantly reduced training time. This approach shows promise 
for modeling complex geometries and inhomogeneous material 
properties, offering an effective alternative to conventional meth-
ods. 

Yucesan and Viana (2023) introduced a hybrid PINN for pre-
dicting the fatigue life of wind turbine main bearings. Their model 
innovatively combines known physical laws, such as L10 life cal-
culation criteria, with machine learning to account for complex fac-
tors difficult to describe analytically, such as lubricant degradation. 
The model's hybrid nature allows it to adapt to various operating 
conditions by effectively integrating physics-informed layers with 
data-driven layers. Although the study focuses on wind turbines, the 
proposed approach holds significant potential for application in the 
aerospace industry, where similar hybrid models could be adapted 
for accurate fatigue life prediction of components subjected to com-
plex loads and environmental influences. 

Thermal Problems 

Aygun and Karakus (2022) investigated the application of 
PINNs for modeling two-dimensional incompressible thermal con-
vection, described by the Navier–Stokes equations and the heat con-
duction equation, while bypassing traditional mesh discretization. 
They demonstrated the effectiveness of PINNs in solving both 
steady and unsteady thermal convection problems across various 
geometries, including channels and enclosed domains with temper-
ature gradients. Results, compared with analytical and numerical 
solutions, confirmed the high accuracy of the model, specifically 
highlighting the importance of tuning weighting coefficients in the 
loss function to achieve optimal precision. The study underscores 
the potential of PINNs for efficient and accurate modeling of com-
plex thermal phenomena, particularly in problems with intricate 
boundary conditions. 

Bararnia and Esmaeilpour (2022) investigated the application 
of PINNs for solving problems involving thermal and hydrody-
namic processes within boundary layers. Their objective was to 
model convective heat transfer and boundary layer flows, bypassing 
traditional mesh-based methods and accommodating complex 
boundary conditions. The authors successfully demonstrated that 
PINNs effectively reproduce temperature and velocity distributions, 
exhibiting good convergence with classical numerical methods and 
avoiding issues related to stability and discretization. The study con-
firms PINNs' potential for accurate and flexible modeling of heat 
and mass transfer in boundary layers, although it also indicates the 
need for further refinement for more complex multi-dimensional 
and turbulent problems. 

In their article, Bararnia and Esmaeilpour (2022) investigated 
the application of PINNs for solving boundary layer thermohydro-
dynamic problems. They focused on modeling two-dimensional 
temperature and flow velocity distributions, described by the Na-
vier–Stokes equations coupled with the heat conduction equation, 
taking into account Prandtl and Grashof numbers. The authors 
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demonstrated that PINNs can accurately approximate these systems 
of differential equations, yielding convergent results for both the 
temperature field and velocity profile without the need for labeled 
data points. Network training was based on a loss function formu-
lated from the residuals of the governing equations and boundary 
conditions, ensuring physically consistent behavior. This confirms 
the potential of PINNs for efficiently solving thermohydrodynamics 
problems without mesh discretization, offering flexibility for com-
plex geometric domains and reducing computational costs. 

Bowman et al. (2023) investigated the application of PINNs to 
solve the heat conduction equation with a heat source and various 
boundary conditions, focusing on the interaction of laser radiation 
with biological tissues. The study revealed that the optimal choice 
of network architecture and activation functions significantly im-
pacts model accuracy: for problems with a heat source, the Tanh 
activation function yielded the best results, whereas for problems 
without a heat source, hybrid combinations were superior. This un-
derscores the effectiveness of PINNs for modeling complex thermal 
processes, which has direct relevance for bioengineering and aero-
space medicine. 

In their article, Zhang et al. (2023) presented a parametric 
physics-informed deep learning (PIDL) methodology for the prob-
abilistic design of thermal protection systems (TPS) in aerospace 
engineering. PIDL, similar to PINNs, is an approach that integrates 
physical laws into deep learning models; however, PIDL can en-
compass a broader range of deep learning architectures, not limited 
exclusively to neural networks that solve differential equations (as 
PINNs do). The authors' key achievement lies in incorporating par-
ametric uncertainties (e.g., variations in thermal conductivity and 
heat capacity of TPS materials) to assess their impact on tempera-
ture distribution and system reliability. The proposed PIDL model 
demonstrated high speed and accuracy in predicting temperature 
fields under uncertainty, achieving results comparable to traditional 
finite element methods but with significantly lower computational 
costs. This makes PIDL a promising tool for rapid and reliable de-
sign and real-time evaluation of TPS, which is critically important 
for aerospace applications. 

Zhao et al. (2023) proposed an innovative approach for pre-
dicting temperature fields based on heat source locations, utilizing 
a physics-informed convolutional neural network (PI-CNN). This 
method obviates the need for labeled data, a common challenge in 
engineering problems. PI-CNN, a variation of the broader PINNs 
concept, integrates physical laws directly into the network's convo-
lutional architecture. It is trained based on the heat conduction equa-
tion and the finite difference method, employing a physical loss 
function that accounts for the divergence between the network's pre-
diction and the analytical solution of the differential equations, 
along with padding for hard boundary conditions. The study demon-
strated that PI-CNN yields results comparable to traditional numer-
ical methods but significantly accelerates the optimization process. 
The application of online mining of important examples helps bal-
ance optimization across different pixels, rendering this approach 
exceptionally efficient for engineering applications such as ther-
moregulation in electronic devices or spacecraft. 

Fowler et al. (2024) investigated the application of PINNs for 
modeling heat flow in a naturally convective cavity, utilizing a vor-
tex-stream function formulation of the Navier–Stokes equations. 
They demonstrated PINNs' ability to autonomously generate solu-
tions for two- and three-dimensional geometries at various Rayleigh 
numbers without relying on known data, confirming high accuracy 
through comparison with analytical solutions. The study revealed 
that for high Rayleigh numbers, the increasing nonlinear coupling 
between thermal and hydrodynamic processes necessitates more it-
erations. Furthermore, the three-dimensional simulations confirmed 
PINNs' potential for operation in high-dimensional spaces, which is 
crucial for thermal regime calculations in aerospace engines. 

Gholampour et al. (2024) investigated the application of pa-
rameterized physics-informed neural networks (P-PINNs) for solv-
ing a transient thermal problem describing natural convection with 
a heat source. Their work focused on the efficacy of P-PINNs in 
multi-parameter problems, including Rayleigh and Prandtl num-
bers, without utilizing experimental data. The results demonstrated 
P-PINNs' ability to accurately reproduce solutions comparable to 
classical numerical methods; however, parameterizing one variable 
increased computational cost by 15%, and three variables by 46%. 

The authors emphasized the importance of employing specialized 
normalization techniques for large parameters, as training might not 
converge otherwise. This confirms the effectiveness of P-PINNs for 
calculating thermal regimes in aerospace engines. 

In their study, Jalili et al. (2024) investigated the application of 
physics-informed neural networks (PINNs) for predicting heat 
transfer and hydrodynamics in two-phase flows, focusing on mod-
eling gas bubble movement and heat transfer near heated surfaces. 
The authors demonstrated PINN's high accuracy: maximum inter-
face tracking error was 5.2% at the phase boundary and 2.8% for 
the bubble's center of mass position. Even without input velocity 
data, the model remained accurate, showing a maximum root mean 
square error of 0.28 for unknown fluid properties. In the case of 
bubble movement near a hot wall, the maximum temperature error 
was 6.8%, and the bubble's positional error was 3.6%. The study 
also highlights PINN's versatility, evidenced by its independence 
from geometry and fluid properties in convection and buoyancy 
analysis, as well as significant computational cost savings compared 
to CFD modeling, especially for inverse and extrapolation prob-
lems. Furthermore, modifications such as Bayesian PPNN (BPINN) 
enhance robustness to noisy data. 

In their study, Oddiraju et al. (2024) presented an innovative 
application of physics-informed machine learning (PIML) for de-
veloping a real-time thermal simulator for spacecraft. PIML is a 
broader paradigm that integrates physical laws directly into ma-
chine learning algorithms, whereas PINNs are a specific implemen-
tation focusing on using neural networks to solve physical problems 
described by differential equations. The authors' key achievement 
lies in creating a hybrid model that combines neural networks with 
simplified physical models. This approach enables efficient and ac-
curate real-time prediction of thermal states, which is critically im-
portant for autonomous space missions. The proposed architecture 
employs a neural network to predict a reduced node distribution 
based on orbital thermal loads, followed by the application of a fi-
nite difference model. This model offers improved generalizability 
and reduces computational costs by up to 1.7 times compared to 
high-fidelity models, by integrating physical knowledge to enhance 
interpretability and robustness, which is crucial for optimizing ther-
mal calculations and reducing spacecraft mass. 

Yang et al. (2024) applied a PINNs to solve the problem of 
thermoelastic expansion of a cavity under plane stress conditions. 
Their work focused on modeling the interaction of thermal and me-
chanical processes in geotechnical structures, demonstrating 
PINN's effectiveness in solving complex problems without mesh 
discretization. Simulation results confirmed PINN's accuracy in re-
producing temperature and stress distributions, accounting for non-
linear thermoelastic effects. This study highlights PINN's potential 
as a powerful tool for thermoelastic problems with complex geom-
etries and boundary conditions. Its principles are directly applicable 
in aerospace engineering, for instance, in analyzing thermal and me-
chanical loads on rocket engine components or high-temperature 
heat exchangers. 

Bobzin et al. (2025) applied PINNs to predict particle proper-
ties during plasma spraying, a crucial process for applying protec-
tive coatings in aviation. They developed a PINN model that di-
rectly integrates physical laws (equations of motion, heat exchange, 
viscous drag, turbulent fluctuations) into the network, avoiding the 
need for numerical grids or extensive experimental data. The study 
showed that the model accurately predicts particle trajectory, tem-
perature, and velocity, ensuring stable convergence and low error. 
This confirms the effectiveness of PINNs for modeling microscale 
particle dynamics in plasma jet processes, offering a tool for the pre-
liminary design of coatings with good generalizability. 

Acoustic Problems 

Pettit and Wilson (2020) presented a pioneering application of 
PINNs for modeling sound propagation in the atmospheric bound-
ary layer. This work integrates the acoustic wave equation directly 
into deep neural networks, ensuring physical consistency of predic-
tions even with limited data. The proposed PINN model demon-
strates high accuracy in predicting sound exposure levels, surpas-
sing traditional data-driven models due to its generalization capa-
bilities. This research represents an important step in the develop-
ment of physics-informed modeling for acoustic phenomena, par-
ticularly for the needs of aerospace acoustics, where accurate noise 
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propagation prediction is critically important. 
In their work, Borate et al. (2023) proposed an innovative ap-

proach for predicting laboratory earthquakes by integrating physical 
laws into the structure of neural networks. They developed a PINN 
that utilizes ultrasonic monitoring data from shear zones in conjunc-
tion with physical constraints describing the elastic coupling of the 
shear zone to the surrounding rock and the dependence of shear 
zone stiffness on the ultrasonic wave transmission coefficient. This 
hybrid approach significantly enhanced prediction accuracy (by 10–
15% compared to purely data-driven models), especially under con-
ditions of limited training data, and improved the models' ability to 
transfer learning to new experimental conditions. It is important to 
note that the application of PINNs for modeling acoustic phenom-
ena, particularly aviation noise, demonstrates the potential of this 
methodology for scaling to aerospace acoustics tasks. 

Mariappan et al. (2024) applied PINNs to study complex ther-
moacoustic interactions in combustion chambers that lead to com-
bustion instability. Using acoustic pressure oscillations from three 
points and the total flame heat release rate as input data, the re-
searchers demonstrated PINN's ability to effectively reconstruct the 
full spatio-temporal acoustic field (pressure and velocity oscilla-
tions) and identify key model parameters. This approach provides a 
powerful tool for optimizing existing and designing new thermo-
acoustically stable and structurally efficient combustion chambers, 
which is critically important for rocket engines and industrial burn-
ers, and also holds significant potential for application in aerospace 
acoustics. 

In their study, Schmid et al. (2024) successfully applied PINNs 
to solve the inverse problem of estimating acoustic boundary admit-
tance, even under conditions of limited and noisy data. The authors 
trained a neural network to approximate the solution of the Helm-
holtz equation in 2D without explicitly specifying boundary condi-
tions. They then compared the estimated boundary admittance with 
reference data from the finite element method and experimental 
measurements in an acoustic impedance tube. This approach 
demonstrated high accuracy in reproducing the acoustic field and 
effectiveness in solving the inverse problem, including spatially var-
ying boundary conditions. This opens up significant prospects for 
identifying material parameters and localizing noise sources in 
acoustics and other fields of computational physics. 

Yokota et al. (2024) developed an innovative PINN named 
ResoNet for in-depth analysis of acoustic resonances in one-dimen-
sional pipes. Their model combines standard PINN loss functions 
with a periodicity condition, enabling accurate modeling of reso-
nance phenomena in the time domain, accounting for energy losses. 
The study encompasses both forward and inverse analyses of the 
wave equation, demonstrating ResoNet's accuracy compared to the 
finite difference method and its ability to successfully identify the 
energy loss coefficient and optimize acoustic tube design. This work 
opens new avenues for modeling and optimizing acoustic systems, 
which is crucial for aerospace acoustics. 

In their study, Zhu et al. (2024) presented a PGNN for predict-
ing aviation noise at airports. The authors integrated the European 
Civil Aviation Conference (ECAC) model, which is based on aero-
dynamic and acoustic principles, into a deep neural network. This 
hybrid approach significantly enhanced accuracy: the mean abso-
lute error (MAE) for predicting sound exposure level (SEL) was 
only 0.98 dBA, outperforming traditional ECAC Doc. 29 models 
(MAE 1.5−2.2 dBA). The model's effectiveness, which utilized Air-
craft Noise and Performance (ANP) and Automatic Dependent Sur-
veillance-Broadcast (ADS-B) data from Frankfurt (EDDF) and 
Schiphol (EHAM) airports, persisted even with incomplete infor-
mation: with 30% missing flight trajectory data, the error increased 
by only 12%, whereas in pure deep neural networks (DNNs), it rose 
by 45-60%. This research demonstrates the significant potential of 
PGNN for creating adaptive noise maps with updates every 15 
minutes, marking an important step in the development of aerospace 
acoustics and aviation noise prediction. 

Schoder (2025) presented an extended application of PINNs 
for predicting modal wave fields in three-dimensional room acous-
tics by solving the inhomogeneous Helmholtz equation. The re-
search focuses on improving the network's generalization capability 
for realistic point excitation sources using methods such as hyperpa-
rameter optimization, adaptive refinement, feature engineering via 
Fourier transformation, and locally adaptive activation functions. 

The results indicate that the modified PINN architecture with fea-
ture engineering significantly enhances modeling accuracy, achiev-
ing a relative error of 0.086% for a point source. It also surpasses 
the finite element method in terms of training time and the number 
of tunable parameters, highlighting its potential for computationally 
efficient modeling of acoustic fields in complex geometries, which 
is crucial for aerospace acoustics. 

Electromagnetic Problems 

Baldan et al (2023) explored the application of PINNs for solv-
ing inverse electromagnetic problems, a crucial aspect for diagnos-
ing and analyzing electromagnetic systems. The authors success-
fully demonstrated how PINNs can reconstruct unknown parame-
ters, such as current distributions and magnetic permeability, by in-
tegrating Maxwell's equations directly into the neural network's loss 
function. The method exhibited high accuracy and stability in re-
construction, even with limited or noisy measurements, surpassing 
classical inverse methods due to the absence of a need for mesh dis-
cretization and its flexibility with complex boundary conditions. 
This approach holds promise for non-invasive diagnostics, material 
and design optimization, and has direct applications in the aerospace 
industry for analyzing and optimizing electromagnetic systems. 

In their article, Qi and Sarry (2023) investigated the applica-
tion of PINNs for complex multiphysics simulations, focusing on 
interconnected electromagnetic and thermal processes. The authors 
successfully integrated equations from both domains into a unified 
model, allowing for accurate modeling of phenomena where an 
electromagnetic field induces material heating, and temperature 
changes, in turn, affect electromagnetic properties. The results 
showed that PINNs reproduce field distributions and temperature 
profiles with high accuracy, comparable to classical numerical 
methods, demonstrating flexibility in working with limited data and 
complex boundary conditions. This approach is promising for re-
ducing computation time and optimizing complex systems, particu-
larly for analyzing electromagnetic fields in aerospace engine and 
antenna components, where multiphysics interactions are crucial. 

In their work, Wang et al. (2024) presented the application of 
PINNs for modeling electromagnetic fields in the frequency do-
main, which is critically important for geophysical sounding and 
analyzing subsurface structures. The authors successfully solved 
Maxwell's equations in inhomogeneous media by integrating phys-
ical laws and boundary conditions directly into the PINN's loss 
function, thereby avoiding the need for mesh generation. The results 
demonstrate high accuracy in reproducing electromagnetic fields in 
multi-layered and complex configurations, robustness to noise in in-
put data, and excellent generalization capability. This approach, 
which significantly simplifies modeling and reduces computational 
costs, can be extended to three-dimensional problems. Despite its 
geophysical focus, it has direct applications for modeling electro-
magnetic processes in complex aerospace environments. 

Chen et al. (2024) successfully tackled the complex inverse 
problem of reconstructing surface profiles from measured electro-
magnetic fields using PINNs. Their model accurately reconstructs 
the topography of intricate surfaces by integrating physical laws di-
rectly into the training process, even with limited observations and 
noisy input data. The proposed approach demonstrated high accu-
racy and robustness, outperforming traditional inversion methods, 
and showed versatility when applied to various surface types. This 
methodology opens up significant prospects for remote sensing, 
particularly in the aerospace industry for analyzing structural integ-
rity and planetary topography, as it allows for a reduction in the 
number of necessary measurements and an increase in reconstruc-
tion reliability. 

In their article, Fieramosca et al. (2024) presented an innova-
tive approach to predicting radio frequency (RF) signal propagation, 
specifically considering the impact of human body movements in 
indoor environments, using physics-informed generative neural net-
works (GNN). The authors developed a model based on a varia-
tional autoencoder (VAE) that integrates the physical principles of 
electromagnetic wave diffraction by the human body. This model is 
capable of quickly and accurately reproducing changes in the RF 
field caused by human movements, which is critical for real-time 
applications such as contactless localization and tracking. The re-
sults showed that GNN-VAE effectively reproduces the statistical 
properties of signal propagation and provides a significant reduction 
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in computation time compared to traditional methods, opening new 
possibilities for RF sensing in complex environments. 

Zucker et al. (2025) presented the application of PINNs for 
modeling atmospheric radiative transfer, focusing on solving radia-
tion transfer equations. Their work demonstrates that PINNs can ac-
curately and efficiently numerically solve these complex equations 
without traditional mesh discretization, reproducing radiation inten-
sity distributions in various atmospheric layers with high precision, 
comparable to classical methods. The approach proved robust to 
variations in environmental parameters and effectively handles in-
homogeneous absorption and scattering profiles, while also gener-
alizing well to new conditions. This research opens new possibilities 
for reducing computational costs and increasing modeling flexibil-
ity in remote sensing, climate modeling, and aerospace engineering, 
which is key for analyzing the propagation of electromagnetic radi-
ation in complex environments. 

Optical Problems 

Chen and Dal Negro (2022) presented an application of PINNs 
to solve the inverse problem of image reconstruction and parameter 
retrieval for photonic nanostructures from experimental near-field 
data. The researchers demonstrated how PINNs, by integrating 
Maxwell's equations, can accurately reconstruct the spatial distribu-
tions of the refractive index and geometric parameters of nanopho-
tonic objects. The model exhibited high robustness to noise in the 
data and effectiveness in parameter retrieval, even in cases where 
traditional methods were less successful. This approach signifi-
cantly enhances the accuracy and physical fidelity of reconstruction, 
opening new possibilities for the analysis of photonic systems. 

In their study, Ghosh et al. (2022) presented the application of 
physics-informed machine learning for modeling electromagnetic 
modes in composite materials. They developed an approach based 
on PINNs, which integrates physical laws directly into the training 
process. This allows for more accurate and physically consistent so-
lutions to describe wave propagation in complex, inhomogeneous 
media. The results demonstrated high accuracy and stability in re-
producing electromagnetic modes in composites, effectively incor-
porating physical constraints and exhibiting generalization capabil-
ities to new configurations. This approach strikes a balance between 
accuracy, efficiency, and physical interpretability, significantly im-
proving the design and analysis of systems in high-tech fields like 
aerospace engineering. 

In their 2022 study, Saba et al. presented the application of 
PINNs for solving diffraction tomography problems. The authors 
focused on reconstructing the three-dimensional refractive index 
distribution of objects from scattered light measurements, directly 
integrating the physical equations of wave optics into the neural net-
work's training process. This approach significantly enhanced re-
construction accuracy and ensured the physical correctness of the 
results, even under conditions of limited quantity and quality of ex-
perimental data. The model demonstrated high robustness to noise 
and effectiveness, outperforming classical diffraction tomography 
methods in accuracy and generalization capability. The use of 
PINNs in this field opens new possibilities for high-precision recon-
struction of the internal structure of materials, by combining exper-
imental data with fundamental physical laws. 

In their work, Gigli et al. (2023) applied physics-driven neural 
networks (PDNNs) to predict nonlinear optical scattering in com-
plex materials. The authors successfully integrated the relevant 
physical equations directly into the neural network's structure, al-
lowing the model to accurately reproduce complex nonlinear light 
scattering processes, considering both spatial and spectral charac-
teristics. The proposed PINN approach demonstrated robustness to 
noise and the ability to generalize to new configurations, providing 
significant advantages in speed and accuracy compared to classical 
methods. This opens new possibilities for analyzing and optimizing 
optical systems with pronounced nonlinear phenomena, which is 
critically important for developing new materials and devices in 
photonics and optoelectronics. 

Ünal and Durgun (2025) presented a physics-aware neural net-
work — a variant of PINNs for rapid and accurate prediction of the 
effective refractive index of photonic waveguides. This approach, 
which integrates physical knowledge directly into the network's 
structure, eliminates the need for time-consuming numerical simu-
lations, such as the finite difference or finite element methods. The 

developed model demonstrates high accuracy and significantly out-
performs traditional methods in computational speed for a wide 
range of waveguide structures, including those with complex geom-
etries and inhomogeneous materials. This innovation will consider-
ably accelerate the design of photonic devices, providing a balance 
between accuracy, speed, and physical interpretability, which is cru-
cial for the advancement of modern photonics and aerospace engi-
neering. 

Zucker et al. (2025) explored the application of PINNs for 
modeling atmospheric radiative transfer. They focused on solving 
radiation transfer equations, which are crucial for accurate predic-
tions in climate modeling, satellite monitoring, and remote sensing. 
The authors successfully integrated physical laws, specifically the 
radiative transfer equations, directly into the neural network's struc-
ture. This allowed for highly accurate reproduction of radiation in-
tensity distributions in the atmosphere across various spectral 
ranges and scattering conditions. The model demonstrated robust-
ness to noise, generalization capabilities, and speed advantages 
compared to classical numerical methods. This opens new possibil-
ities for modeling the optical properties of the atmosphere and radi-
ation transfer in aerospace engineering and satellite technologies. 

Chemical and Thermochemical Problems 

In the study by Ghaderi et al. (2022), a PINN was developed 
to model the pyrolysis and ablation of polymers, a process critically 
important for thermal protection systems in aerospace engineering. 
The authors successfully integrated relevant physical laws—en-
compassing heat transfer, chemical reactions, and material degrada-
tion—directly into the network's architecture. This innovative ap-
proach enabled the PINN to effectively solve complex multiphysics 
differential equations. The model demonstrated remarkable accu-
racy in reproducing temperature profiles, pyrolysis rates, and abla-
tion depths, even when relying on limited experimental data. This 
underscores its high precision and notable generalization capability 
to novel conditions. Consequently, this methodology not only pro-
vides reliable predictions but also ensures the physical interpretabil-
ity of its results, a crucial aspect for its application in critical aero-
space processes. 

The research by Ihunde and Olorode (2022) zeroes in on 
PINNs for the comprehensive modeling of multicomponent systems 
that involve phase transitions and component transport. This ap-
proach, notably scalable to aerospace challenges, facilitates the 
modeling of critical processes such as fuel combustion in aircraft 
and rocket engines. In such scenarios, accurately accounting for 
phase transitions, mixture composition, and heat exchange is para-
mount. Similarly, PINNs hold significant promise for simulating 
thermochemical processes during spacecraft atmospheric re-entry 
and for optimizing thermal protection materials. By seamlessly in-
tegrating physical laws with neural network learning capabilities, 
PINNs effectively solve complex differential equations without grid 
discretization. This translates into a substantial reduction in compu-
tational costs and an enhancement in model generalizability. Ulti-
mately, this paves the way for achieving greater accuracy and speed 
in simulations crucial for the design of advanced aerospace systems. 

In their work, Shadram et al. (2022) introduced an innovative 
approach to modeling combustion instabilities within a single-injec-
tor combustor—a critical challenge in aerospace engine design. 
They developed a physics- aware neural network (a type of PINN) 
for flame closure modeling. This model seamlessly integrates ex-
perimental data with the underlying physical laws that govern the 
intricate interactions of chemical kinetics, turbulence, and acoustic 
phenomena. The model accurately reproduced the complex dynam-
ics of combustion instabilities, including pressure oscillations and 
heat/reactivity distribution. It demonstrated significantly better 
agreement with experimental data and superior generalization capa-
bilities compared to traditional models. This achievement highlights 
the immense potential of embedding physical constraints into neural 
networks to enhance the reliability of simulating complex thermo-
chemical processes. Ultimately, this paves the way for optimizing 
the design and operational modes of aerospace engines, particularly 
in the context of effectively controlling combustion instabilities. 

In their article, Wang et al. (2022) explored the potential of 
PINNs for solving differential equations that describe chemical 
combustion processes, particularly focusing on complex reaction 
kinetics. The authors demonstrated that PINNs can accurately 
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reproduce the dynamics of reactant and product concentrations, as 
well as temperature profiles across various chemical systems, en-
compassing both simple and intricate reaction mechanisms. The 
model exhibited robustness with limited data and proved efficient 
in solving problems with nonlinear kinetics, where traditional meth-
ods typically demand significant computational resources. These 
findings confirm that PINNs offer a flexible and precise tool for 
modeling chemical combustion kinetics. This is particularly valua-
ble for enabling rapid and reliable calculations in aerospace engi-
neering. 

The scientific paper by Song et al. (2024) details the develop-
ment and application of PINNs, integrated with a flamelet/progress 
variable model, for the efficient and accurate modeling of combus-
tion with a detailed chemical reaction mechanism. This hybrid ap-
proach successfully tackles the nonlinear differential equations that 
describe chemical reactions and heat transfer, precisely replicating 
temperature and concentration distributions, as well as the dynamics 
of reaction progress in multidimensional combustion scenarios. A 
key achievement of this work is the substantial reduction in compu-
tational costs compared to classical methods. This makes the meth-
odology highly promising for complex aerospace applications, par-
ticularly for better incorporating the intricacies of reaction mecha-
nisms and accurately predicting flame behavior. 

In their work, Zhang et al. (2024) introduced an innovative 
CRK-PINN (Combustion Reaction Kinetics Physics-Informed 
Neural Network) designed to solve ordinary differential equations 
that describe the kinetics of chemical combustion reactions. The pri-
mary achievement here is a significant enhancement in the accuracy 
and efficiency of modeling complex reaction mechanisms, which 
are particularly characteristic of aerospace systems. This advance-
ment stems from the seamless integration of physical laws directly 
into the neural network's architecture. The CRK-PINN demon-
strated high fidelity in reproducing the dynamics of reactant and 
product concentrations, even with limited data. It also outperformed 
classical numerical methods in terms of convergence speed and 
noise resilience, while effectively scaling to accommodate large re-
action mechanisms. This approach expands the capabilities of 
PINNs for modeling chemical combustion kinetics, providing both 
high accuracy and flexibility. This makes it an invaluable tool for 
the design and optimization of aerospace engines. 

Material–Environment Interaction Problems 

In the study by Dourado and Viana (2019), the application of 
PINNs for predicting corrosion-fatigue damage in materials is pre-
sented. The authors developed a model that combines the physical 
principles governing corrosion and fatigue with the capabilities of 
deep learning. This involved integrating both experimental data and 
differential equations that describe the evolution of damage. The 
PINNs accurately replicated the dynamics of crack growth under 
the combined influence of corrosion and cyclic loading. They 
demonstrated high consistency with experimental results regarding 
crack propagation rates and time to failure, even with a limited 
amount of training data. This highlights the significant potential of 
PINNs for predicting the remaining useful life of materials and gain-
ing a deeper understanding of their degradation mechanisms, which 
is critically important for aerospace engineering. 

In their research, Mishra and Molinaro (2021) successfully ap-
plied PINNs to model radiative transfer processes. They achieved 
this by integrating the Radiative Transfer Equation (RTE) as a phys-
ical constraint within the loss function. The developed PINN accu-
rately reproduced RTE solutions for various configurations, includ-
ing both one-dimensional and multi-dimensional problems with 
varying absorption and scattering coefficients. Even with limited 
training data, the model demonstrated its effectiveness in account-
ing for complex physical interdependencies, which are significantly 
more challenging to resolve using traditional numerical methods. 
The authors emphasize that PINNs serve as an efficient tool for 
modeling intricate radiative transfer processes, a capability criti-
cally important for analyzing thermal processes in the aerospace in-
dustry. Furthermore, they note that this approach can be expanded 
to solve a wider spectrum of multiphysics problems. 

In a pioneering study, Zhang et al. (2022) showcased the ap-
plication of PINNs for analyzing internal structures and defects 
within materials. The authors developed a model that integrates 
solid mechanics equations with neural networks, enabling the 

precise detection and characterization of defects (such as cracks and 
voids) without requiring direct internal access. The PINNs success-
fully reconstructed the distribution of stresses and strains around de-
fects, accurately predicting their impact on mechanical properties. 
This was validated by high precision when compared to classical 
methods and experimental data. This work opens new avenues for 
non-invasive material quality control and is critically important for 
ensuring the reliability and longevity of structures in the aerospace 
industry. 

In their work, Choi and Lee (2023) developed a Physics-In-
formed, Data-Driven model based on a Bayesian network for pre-
dicting the atmospheric corrosion of carbon steel. This approach is 
groundbreaking because it integrates the physical laws of corrosion 
processes with experimental data, allowing for more accurate mod-
eling of oxide layer growth and material degradation. The model 
effectively forecasts corrosion rates by accounting for the influence 
of humidity, temperature, and other environmental factors, as well 
as the inherent uncertainty in input data. This ensures the adaptabil-
ity and reliability of long-term predictions. The researchers empha-
size the promising nature of such a combination of physical 
knowledge and statistical methods for a better understanding of ma-
terial-environment interactions and for enhancing the efficiency of 
materials science research, especially within the aerospace sector. 

In their work, Hu et al. (2024) investigated and systematized 
the application of PINNs within computational solid mechanics 
(CSM). They achieved this by developing numerical frameworks 
for modeling the mechanical behavior of materials and structures. 
Their advancements in PINN architecture enable accurate reproduc-
tion of stress-strain states, displacement and stress distributions, and 
even the modeling of defects and cracks in thin-walled structures. A 
key achievement is the integration of physical knowledge—such as 
equilibrium equations, compatibility conditions, and material 
laws—without the need for mesh discretization. This provides sig-
nificant flexibility and scalability in modeling. The authors empha-
size that PINNs open up new avenues for analyzing material degra-
dation, crack propagation, and corrosion, all of which are exceed-
ingly relevant for aerospace engineering. 

In their article, Janssen et al. (2024) introduce the Physics-In-
formed General Convolutional Network (PIGCN)—a novel ap-
proach that extends the concept of PINNs by integrating physical 
laws directly into the architecture of convolutional neural networks 
(CNNs). This is achieved by utilizing convolutional operations to 
approximate differential operators. This innovation effectively ac-
counts for local spatial dependencies and the geometric characteris-
tics of damaged materials, significantly reducing computational 
costs. The PIGCN successfully models the distribution of stresses, 
strains, and displacements in materials with defects, demonstrating 
high accuracy and consistency with Finite Element Method (FEM) 
results. Remarkably, it achieves stable outcomes with only 2% of 
training data, indicating improved generalization capability and 
physical reliability. The authors emphasize the promising potential 
of PIGCN for modeling defective materials, which reduces data re-
quirements and is critically important for both materials science and 
aerospace engineering. 

In their comprehensive review, Malashin et al. (2025) provided 
an in-depth analysis of the current state and future prospects of ap-
plying PINNs for modeling polymeric materials. Their focus was 
on integrating physical laws into neural networks to describe the 
mechanics, thermal conductivity, diffusion, and degradation of 
these materials. The review highlights the high efficacy of PINNs 
in modeling multiphysics processes in polymers, especially in situ-
ations with limited or hard-to-obtain data. They offer examples of 
predicting mechanical behavior, aging, corrosion, and the influence 
of external factors. The authors emphasize that PINNs unlock new 
possibilities for creating versatile, physically grounded models of 
polymeric materials. These models can be adapted for diverse ma-
terials science tasks, including optimizing composition, predicting 
durability, and developing new materials with tailored properties—
all of which are critically important for aerospace applications. 

Multicomponent-System Problems 

In their work, Almajid and Abu-Al-Saud (2022) successfully 
applied PINNs to predict fluid movement in porous media. The 
study demonstrated the high accuracy of PINNs in modeling flow 
dynamics, including pressure and velocity distribution, even with a 
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limited amount of input data. This highlights PINNs' potential as an 
effective complement to traditional numerical methods, especially 
for complex systems with heterogeneous geometry or a scarcity of 
information. This capability is critically important for modeling 
multicomponent flows in the oil and gas and aerospace industries. 

Zhu, Hu, and Sun (2023) developed an advanced PINN model 
for solving problems related to two-phase interface dynamics, en-
compassing the movement of the boundary between liquid and gas-
eous phases in both 2D and 3D configurations. Their approach in-
tegrates the Navier-Stokes equations, impermeability conditions, 
and surface tension laws without the need for traditional mesh dis-
cretization. This allowed them to achieve high accuracy in repro-
ducing phase deformation, merging, and separation, while avoiding 
the numerical artifacts characteristic of classical methods and sig-
nificantly reducing computational costs. The results confirm the ef-
fectiveness of PINNs for modeling complex dynamic processes of 
two-phase interaction, which is critically important for engineering 
applications in fuel and energy systems, as well as for understanding 
the behavior of mixtures under challenging physical conditions. 

In their research, Zhang et al. (2024) successfully applied 
PINNs to model multiphase flows in porous media, with a particular 
focus on accounting for double shock waves and interphase solubil-
ity. The authors demonstrated that PINNs effectively reproduce the 
dynamics of multiphase flow, including accurate modeling of shock 
wave behavior and the mutual solubility of components, achieving 
high precision even with limited data. This approach stands as a 
powerful tool for analyzing complex multicomponent systems 
within porous media, ensuring the physical fidelity of results in sce-
narios involving nonlinear effects. This is critically important for 
advancements in energy and fuel technologies. 

In their research, Jalili et al. (2024) successfully applied PINNs 
to predict heat transfer in two-phase flows, specifically emphasizing 
the complex thermal processes involved in fluid-gas interactions. 
The PINNs demonstrated high accuracy in forecasting temperature 
distributions and heat fluxes, effectively integrating physical laws 
and boundary conditions. This resulted in better agreement with ex-
perimental data compared to classical methods. The authors high-
lighted the promising potential of PINNs as a tool for modeling heat 
transfer in complex two-phase systems, especially when experi-
mental data is limited. They also noted the potential to extend this 
approach to more intricate multicomponent systems. 

Brumand-Poor et al. (2024) successfully demonstrated the ap-
plication of PINNs for solving the Reynolds equation with transient 
cavitation modeling. Their models accurately reproduce the com-
plex nonlinear effects and the dynamics of cavitation zones within 
lubrication layers, which is critically important for multicomponent 
hydrodynamic systems, particularly fuel systems in the aerospace 
sector. The research highlights the effectiveness of PINNs in pre-
dicting pressure dynamics and cavitation distribution over time, of-
fering a powerful tool for analysis where traditional methods face 
limitations. 

In their research, Parfenyev et al. (2024) successfully applied 
PINNs for the reconstruction of parameters and the retrieval of two-
dimensional turbulent flows. Their approach allowed for the accu-
rate identification of key parameters such as viscosity and turbu-
lence intensity, as well as the reconstruction of spatiotemporal ve-
locity fields and other physical quantities, even when using limited 
experimental data. This study demonstrates the significant potential 
of PINNs for analyzing complex dynamic systems, such as turbu-
lent multicomponent flows, where traditional methods often face 
challenges due to data scarcity or lack of flexibility. 

Phạm and Mai (2024) successfully applied PINNs to model 
two-phase flow in porous media, specifically focusing on the pro-
cess of waterflooding oil fields using the Buckley-Leverett theory. 
Their models demonstrated high accuracy and reliability in predic-
tion, even under conditions of sharp changes in physical quantities 
and with limited input data. This is critically important for under-
standing the behavior of fuel mixtures in complex environments and 
for effective field development planning, and it holds significant rel-
evance for the aerospace industry. 

Yan et al. (2024) applied PINNs to simulate two-phase flows 
in heterogeneous and fractured porous media. Their research 
demonstrated that PINNs effectively and accurately model the dis-
tribution of phases, pressure, and velocity, even with limited data. 
Remarkably, they either surpassed or matched the precision of 

classical numerical methods in complex structures. This confirms 
the significant potential of PINNs for modeling multicomponent 
flows in intricate systems, which is critically important for under-
standing the behavior of fuel-oxidizer mixtures in the aerospace in-
dustry. 

Zhou et al. (2024) presented an innovative integrated approach 
to simulating two-phase flows. This method combines PINNs with 
leading interface tracking methods, such as Volume of Fluid (VOF) 
and Level Set. This hybrid model significantly enhances simulation 
quality by incorporating the Navier-Stokes equations and imperme-
ability conditions, ensuring high accuracy in reproducing complex 
interface dynamics. This includes processes like capillary pressure, 
surface tension, and phase transitions. The proposed method effec-
tively reduces numerical interface smearing and stabilizes the solu-
tion, which is critically important for accurately predicting the be-
havior of fuel mixtures and optimizing aerospace fuel systems. 

Publications Related to Tier 2: Dynamic Analysis 

This section examines publications in which Physics-Informed 
Neural Networks have been applied to dynamic systems governed 
by time-dependent or trajectory-based formulations. These include 
problems such as flight mechanics, ballistic motion, rigid-body dy-
namics, and particle trajectories in external fields — phenomena 
that are central to both atmospheric and spaceborne vehicle model-
ing. The review considers how PINNs are employed to approximate 
motion governed by ordinary or partial differential equations, often 
under complex, nonlinear conditions. Emphasis is placed on how 
temporal evolution, external forces, and dynamic constraints are 
embedded into the structure and training of PINNs, and how these 
models enable high-resolution prediction of trajectories and dy-
namic responses without discretization artifacts. 

Ballistic and Trajectory Problems 

In their research, D'Ambrosio et al. (2021) proposed the appli-
cation of PINNs, combined with the Extreme Theory of Functional 
Connections (X-TFC), for optimizing spacecraft maneuvers near 
asteroids while ensuring collision avoidance. This approach effec-
tively solves two-point boundary value problems, generating fuel-
efficient trajectories amidst complex dynamics. Numerical experi-
ments confirmed the model's high accuracy, comparable to tradi-
tional methods, while demonstrating reduced computational costs 
and enhanced flexibility in modeling. The authors emphasize the 
promising potential of combining PINNs with X-TFC for solving 
optimal control problems in space missions, particularly in scenar-
ios with limited resources and intricate dynamics, thereby ensuring 
high precision in spacecraft trajectory modeling. 

In their study, Schiassi et al. (2022) introduced a novel meth-
odology for solving optimal planar orbit transfer problems using 
PINNs. They combined an indirect method, based on Pontryagin's 
Minimum Principle, with PINNs to learn optimal control actions. 
To achieve this, they utilized the Extreme Theory of Functional 
Connections (X-TFC). X-TFC, a synergy of classical PINN and the 
theory of functional connections, analytically satisfies the boundary 
conditions of the two-point boundary value problem (derived from 
Pontryagin's Principle), thereby avoiding unbalanced gradients dur-
ing training. The results demonstrate high accuracy in reproducing 
optimal trajectories and control actions, surpassing traditional nu-
merical methods in terms of computational cost and convergence. 
This opens new perspectives for optimizing space missions. 

In their research, Stachiw et al. (2022) developed a novel neu-
ral network architecture called FlyNet for modeling aircraft flight 
dynamics. The authors created a global flight model capable of ac-
curately reflecting an aircraft's behavior across its entire operational 
envelope by combining physical principles with the capabilities of 
neural networks. It is important to note that while FlyNet isn't a clas-
sical PINN, it still leverages physical knowledge, specifically sec-
ond-order Taylor series expansions, to enhance modeling accuracy. 
Tested against flight test data from a Bell 412HP helicopter, gath-
ered by the National Research Council of Canada, the model 
demonstrated high precision in predicting forces and moments un-
der various flight conditions. The authors concluded that integrating 
physical knowledge into the neural network's structure enables the 
creation of a universal flight model. This model can be applied to 
different types of aircraft, reducing the need for numerous localized 
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models and simplifying the modeling process for the development 
of control systems and pilot simulators. 

Varey et al. (2024) developed an application of PINNs for as-
sessing the orbital state of satellites with low-thrust electric propul-
sion. By integrating classical astrodynamics models with deep neu-
ral networks, the authors successfully overcame the limitations of 
traditional physical models that do not account for anomalous ac-
celerations. The PINN model, trained to determine an unknown ac-
celeration profile by minimizing the root mean square error between 
observations and predictions, demonstrated a significant reduction 
in observational error (from 123 to 1.00 arcseconds) and a substan-
tial improvement in predicting satellite position (from 3860 km to 
164 km after five days) compared to purely physical models. This 
approach is critically important for accurate space traffic manage-
ment and maintaining space situational awareness. 

In their research, D'Ambrosio and Furfaro (2024) proposed 
Pontryagin Neural Networks (PoNNs), a subclass of PINNs, for 
learning fuel-optimal spacecraft trajectories, specifically for inter-
planetary transfers and landing trajectories. PoNNs leverage 
Pontryagin's Minimum Principle (PMP) to formulate the problem 
as a two-point boundary value problem (TPBVP), which they solve 
using the Extreme Theory of Functional Connections (X-TFC). This 
approach allows for the approximation of the system's state and cos-
tate using constrained expressions that combine analytical satisfac-
tion of boundary conditions with a free function modeled by a shal-
low neural network. To handle discontinuous control, a smoothing 
technique is applied, enabling PoNNs to learn effectively without 
prior information on control switching. The results demonstrate the 
high accuracy of PoNNs, comparable to state-of-the-art methods, as 
well as the ability to analytically compute optimal control. This 
makes the approach highly promising for the optimization of space 
trajectories. 

Michek et al. (2023) developed a methodology for estimating 
the free-flight parameters of aircraft using PINNs, including a mod-
ified version for nondeterministic parameters. The goal was to iden-
tify aerodynamic parameters from flight data, thereby eliminating 
the need for controlled tests. The proposed methods effectively ex-
tract aerodynamic parameters even in the presence of noise and in-
complete data. Furthermore, the modified PINN demonstrates high 
accuracy, outperforming the traditional least squares method. This 
underscores the potential of PINNs for identifying aerodynamic pa-
rameters under real-world flight conditions, which can reduce the 
costs associated with experimental research and be applied to mod-
eling and analyzing flight trajectories. 

In their work, Moschou et al. (2023) presented the use of 
PINNs for modeling astrophysical shock waves. Their approach di-
rectly integrates the magnetohydrodynamics (MHD) equations into 
the neural network's structure, allowing the model to incorporate 
physical constraints. This enabled them to accurately reproduce the 
structure of shock waves, including internal layers and transitional 
regions, with high precision and generalization capability to various 
configurations. The application of PINNs also led to reduced com-
putational costs compared to traditional methods. The authors em-
phasize that integrating physical laws into neural network training 
creates highly accurate and physically consistent models, signifi-
cantly reducing the need for expensive numerical simulations. This 
opens up new possibilities for applying PINNs in astrophysics and 
space research. 

Motion-Dynamics Problems 

In their study, Seyed-Ahmadi and Wachs (2022) proposed a 
physics-inspired neural network architecture for modeling the hy-
drodynamic forces and torques acting on particles in particle-laden 
flows. The goal was to predict these quantities in stationary random 
arrays of spheres (typical of dense suspensions), while accounting 
for limited training data and ensuring the physical consistency of 
predictions. The resulting PINN-oriented architecture, based on a 
superposition of pairwise hydrodynamic interactions and shared 
learning parameters between network blocks, accurately repro-
duced forces and torques across a range of Reynolds numbers from 
2 to 150 and solid volume fractions from 0.1 to 0.4. This architec-
tural solution significantly reduced the degrees of freedom and mit-
igated the risk of overfitting, all while maintaining accuracy at the 
level of benchmark simulations. The authors concluded that the 
physically motivated structure of the neural network ensures 

consistency with the governing physics even under sparse training, 
which is critical for generalization in real-world flows, and demon-
strates suitability for further scaling. 

In their research, Rosofsky et al. (2023) thoroughly analyzed 
the application of Physics-Informed Neural Operators (PINOs) for 
modeling dynamic systems described by partial differential equa-
tions (PDEs). They specifically focused on those involving tem-
poral evolution, fluid-body interaction, and particle movement in 
force fields. The authors successfully demonstrated PINOs' ability 
to achieve a prediction error level of 10−3 when modeling fluid dy-
namics (crucial for assessing aerodynamic drag) and accurately re-
producing particle trajectories in gravitational fields, even with lim-
ited data. The advantage of PINOs over classical methods lies in 
their computational efficiency and their capacity to avoid discreti-
zation artifacts. While the researchers acknowledge the need for fur-
ther optimization for real-world engineering tasks, they emphasize 
that integrating physical laws into neural networks through PINOs 
is a promising tool for solving nonlinear PDEs, ensuring the stabil-
ity and accuracy of predictions. 

Shao et al. (2023) introduced an improved Neural Particle 
Method (INPM) for modeling complex free-surface flows. This 
method overcomes the limitations of the basic NPM by combining 
PINNs with an alpha-shape algorithm to accurately detect fluid 
boundaries and dynamically update boundary conditions. Numeri-
cal experiments confirmed that INPM precisely identifies the free 
surface and ensures stable computations even with non-uniform 
particle distribution, demonstrating higher accuracy and stability 
compared to traditional mesh-free methods. The authors emphasize 
that integrating a surface recognition algorithm into the PINN struc-
ture significantly enhances the accuracy and stability of free-surface 
flow simulations, expanding the scope of application in problems 
with complex geometry and boundary conditions. 

In their systematic review, Sharma et al. (2023) provided a pro-
found analysis of the application of Physics-Informed Machine 
Learning (PIML), including PINNs, within the realm of fluid me-
chanics. The core emphasis was on integrating physical knowledge 
into machine learning to bolster the efficiency and accuracy of mod-
eling complex turbulent flows, which are governed by the Navier-
Stokes equations. The review clearly demonstrates that PIML sig-
nificantly reduces the required data volume and enhances the stabil-
ity of predictions when compared to traditional numerical methods. 
The authors highlight successful instances of PIML being applied 
to model turbulent flows at high Reynolds numbers and to recon-
struct Reynolds stress distributions from Direct Numerical Simula-
tion (DNS) data. They underscore the immense potential of PIML 
and PINNs to either replace or augment high-fidelity numerical sim-
ulations, particularly in scenarios where data is limited. Further-
more, the authors point to the crucial need for continued research to 
develop novel neural network architectures that can seamlessly and 
effectively integrate physical laws. 

In their article, Son et al. (2023) proposed a novel PINN archi-
tecture for modeling the electromagnetic characteristics of a perma-
nent magnet synchronous motor (PMSM). The authors aimed to 
overcome the limitations of traditional methods, such as the Finite 
Element Method (FEM), by directly integrating physical laws into 
the neural network's structure. The proposed PINN architecture ac-
curately reproduces the electromagnetic fields within the PMSM, 
significantly reducing computational costs while effectively ac-
counting for the motor's complex geometric and material properties, 
ensuring high accuracy even with limited data. The results under-
score the potential of this approach for precise modeling of PMSM 
electromagnetic characteristics, reducing reliance on large volumes 
of training data, and opening new avenues for efficient modeling of 
complex electromechanical systems. 

In their article, Barmada et al. (2024) investigated the effec-
tiveness of PINNs for solving direct electromagnetic problems, par-
ticularly Maxwell's equations, by minimizing the integral error to 
account for physical laws. The study proved that PINNs provide ac-
curate solutions to Maxwell's equations without the need for de-
tailed spatial discretization. This was confirmed by examples of 
one-dimensional and two-dimensional Poisson equations, with re-
sults aligning with analytical and FEM solutions. The authors em-
phasize the promising potential of PINNs for electromagnetic anal-
ysis, especially in aerospace modeling, due to significantly reduced 
computational costs and enhanced model accuracy. 
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Jiao et al. (2024) delve into the integration of artificial intelli-
gence, specifically PINNs, with physical sciences for modeling dy-
namic systems described by differential equations. The authors an-
alyze the application of physical principles (such as classical me-
chanics and electromagnetism) to enhance AI algorithms, focusing 
on problems related to fluid dynamics and particle motion. The re-
view demonstrates that PINNs effectively model dynamic systems, 
capable of accurately reproducing phase transitions and predicting 
parameters (e.g., aerodynamic drag) without traditional discretiza-
tion methods, which in turn reduces computational costs compared 
to Computational Fluid Dynamics (CFD). While challenges related 
to scaling for complex systems are acknowledged, the authors em-
phasize that PINNs ensure the reliability and interpretability of 
models, enabling the prediction of trajectories and dynamic re-
sponses in real-time. 

Sedykh et al. (2024) introduced an innovative Hybrid Quan-
tum Physics-Informed Neural Network (HQPINN) for modeling 
laminar flows in complex three-dimensional geometries, such as Y-
shaped mixers. This development combines the expressive power 
of quantum models with the flexibility of PINNs to effectively solve 
computational fluid dynamics (CFD) problems described by the Na-
vier-Stokes equations, without the need for remeshing when geom-
etry or boundary conditions change. The HQPINN demonstrated 
21% higher accuracy compared to classical PINNs in modeling ve-
locity and pressure distributions. It also exhibited the ability for 
transfer learning, adapting to geometry changes without full retrain-
ing, significantly reducing computational costs. The authors empha-
size HQPINN's promising potential for shape optimization and flow 
analysis in complex geometries, opening new avenues in computa-
tional fluid mechanics. 

Sultan and Zhang (2024) conducted a comparative analysis of 
the Moving-Mesh Finite-Difference Method (MMFDM) and 
PINNs to solve the generalized Kolmogorov–Petrovsky–Piskunov 
(gKPP) equation, which describes nonlinear reaction-diffusion pro-
cesses. MMFDM demonstrated high accuracy, particularly with 
adaptive meshes in regions of steep solution gradients. PINNs, on 
the other hand, showed effective learning capabilities even with lim-
ited data, thanks to the integration of physical laws. While PINNs 
necessitate careful hyperparameter tuning for stability, the research 
highlights the distinct advantages of both methods: MMFDM excels 
in scenarios with known geometries and boundary conditions, while 
PINNs offer flexibility when dealing with limited or noisy data. The 
authors propose that hybridizing these approaches could combine 
the precision of traditional methods with the adaptability of neural 
networks. 

Sun et al. (2024) applied PINNs to predict velocity in electro-
magnetic launch processes during manufacturing. The authors fo-
cused on modeling the dynamics of objects (specifically, projec-
tiles) accelerated by electromagnetic forces. Their aim was to create 
a model that accurately replicates the temporal evolution of velocity, 
accounting for complex physical interactions described by systems 
of ordinary differential equations (ODEs). The proposed PINN 
model demonstrated high accuracy in velocity prediction, effec-
tively reproducing experimental data and outperforming traditional 
methods (like the finite element method) in terms of input data re-
quirements. The authors highlight the advantages of PINNs in mod-
eling electromagnetic launch due to the direct integration of physi-
cal laws into the network's structure, which helps avoid discretiza-
tion artifacts and ensures high precision. They also point to the po-
tential for real-time application of PINNs in controlling and opti-
mizing manufacturing processes. 

Rigid-Body Motion Dynamics 

Roehrl et al. (2020) presented an approach to applying PINNs 
for modeling the dynamics of mechanical systems, based on La-
grangian mechanics. The authors directly integrated Lagrange's 
equations into the neural network's structure, which allowed the 
model to account for physical laws during training. This effectively 
combined the advantages of physical models with the flexibility of 
neural networks. Numerical experiments confirmed the high accu-
racy of modeling mechanical system dynamics, even with limited 
data. The model demonstrated an ability to reproduce complex 
movements while adhering to physical constraints. The authors con-
cluded that integrating physical laws into neural network training 
creates models that merge the precision of physical models with the 

adaptability of neural networks, opening new possibilities for mod-
eling and control of complex mechanical systems in the aerospace 
and robotics industries. 

Sedykh et al. (2024) presented a Hybrid Quantum Physics-In-
formed Neural Network (HQPINN) that integrates classical and 
quantum computing approaches to model linear fluid flows in com-
plex three-dimensional Y-shaped mixers. The researchers achieved 
21% higher accuracy compared to classical neural networks by em-
ploying quantum deep layers alongside classical multilayer percep-
trons. The results of this study confirm HQPINN's high effective-
ness in predicting velocity and pressure distributions, underscoring 
the method's significant potential for optimizing complex geome-
tries in computational fluid dynamics, a task that traditionally de-
mands substantial resources. 

Aygun et al. (2023) explored the application of PINNs for 
mesh deformation with precise adherence to boundary conditions. 
The authors utilized the PINN collocation method to determine new 
mesh node positions, applying the equations of linear elasticity to 
model the deformation. To ensure exact enforcement of Dirichlet 
conditions for moving boundaries, which is critical for accurate so-
lutions, they employed a strict boundary condition imposition tech-
nique. Their two-stage approach first involved training a PINN with 
soft boundary conditions, followed by correcting the solution with 
a new PINN incorporating exact boundary positions. The study 
demonstrated that the accuracy of this approach is comparable to 
the finite element method. Furthermore, it successfully addressed 
problems with moving boundaries, simulating typical fluid-struc-
ture interaction challenges. The authors concluded that using PINNs 
for mesh deformation problems without a discretization scheme is 
promising for modeling complex systems with moving boundaries, 
such as aerospace vehicles. 

Gu et al. (2024) presented the application of PINNs for mod-
eling quadcopter dynamics. The authors integrated the law of con-
servation of momentum as a training priority within the network's 
loss function, ensuring physical consistency. They also employed 
the Covariance Confidence Ellipse (CCE) visualization method to 
enhance model interpretability. Furthermore, a visual and physical 
simulator was developed based on AirSim, with a custom imple-
mentation of the ground effect. The proposed PINN outperformed 
linear mathematical models and conventional deep neural networks 
(DNNs) in terms of both accuracy and physical consistency, demon-
strating a superior ability to generalize to unseen data. The authors 
concluded that integrating physical laws significantly improves the 
accuracy and interpretability of quadcopter dynamics models, con-
tributing to the development of more reliable and safer control al-
gorithms for UAVs. 

In their article, Li et al. (2024) introduced a groundbreaking 
approach to applying PINNs to problems involving friction dynam-
ics, specifically for modeling friction-induced vibrations in multi-
point contacts. The authors developed four PINN variants: a basic 
single PINN, a dual PINN, and their enhanced versions incorporat-
ing interpolation techniques. These variants allow for the integration 
of theoretical equations of non-classical multibody dynamics with-
out the need for traditional time-stepping. Numerical experiments 
on a one-dimensional "stick-slip" problem and a two-dimensional 
problem with separation and re-engagement showed that the pro-
posed PINN approaches deliver high modeling accuracy, surpassing 
traditional methods, especially in complex two-dimensional cases. 
The authors concluded that embedding physical laws into neural 
network training enhances accuracy and significantly reduces com-
putational costs by eliminating the necessity for exceedingly small 
time steps. This opens new possibilities for effectively analyzing 
complex dynamic systems with friction. 

In their article, Sahin et al. (2024) investigated the application 
of PINNs for solving both direct and inverse problems in contact 
mechanics under small deformations. The authors employed a 
mixed-variable formulation with output transformation to rigor-
ously enforce Dirichlet and Neumann boundary conditions. Cru-
cially, the inequality conditions inherent in contact problems, spe-
cifically Karush-Kuhn-Tucker (KKT) conditions, were incorpo-
rated as soft constraints by integrating them into the loss function, 
utilizing the Fisher-Burmeister function for optimization. Numeri-
cal experiments on a Hertz contact problem demonstrated that 
PINNs can function as a PDE solver, a data-driven model, an in-
verse solver, and a rapid approximation model, accurately 
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simulating contact phenomena. The importance of hyperparameter 
selection and combining optimizers (Adam and L-BFGS-B) for 
achieving superior results was highlighted. The authors concluded 
that integrating physical laws into neural network training creates 
models that combine the precision of physical models with the flex-
ibility and adaptability of neural networks, contributing to the de-
velopment of reliable control algorithms, particularly for unmanned 
aerial vehicles. 

Publications Related to Tier 3: Functional 

Assessment 

This section focuses on the use of Physics-Informed Neural 
Networks to address tasks that involve performance evaluation, de-
cision-related modeling, and inference within aerospace systems. 
These include applications such as trajectory optimization, flight 
control, parameter identification, and prediction of system behavior 
under variable or uncertain conditions. The literature is reviewed in 
terms of how PINNs are configured to solve inverse and constrained 
problems, learn latent system properties from observed data, or 
forecast future states. Special attention is given to the role of PINNs 
in integrating physical laws with task-specific objectives, enabling 
hybrid modeling strategies that go beyond traditional simulations. 

Control and Navigation Tasks 

Li et al. (2023) proposed an intelligent diagnostic system for 
detecting faults in aero-engine control system sensors during dy-
namic operation. The methodology is built upon a physics-guided 
neural network (PGNN), which integrates data from physical en-
gine models with historical sensor measurements. The PGNN gen-
erates predicted values, and a comparison of these with actual meas-
urements yields residual signals. These residuals are then analyzed 
by a convolutional neural network (CNN) for fault classification. 
Experimental validation demonstrated that the proposed system 
outperforms traditional approaches, reducing the root mean square 
error of prediction and achieving a diagnostic accuracy of 95.9%. 
The introduction of a novel loss function that incorporates physical 
knowledge enabled the elimination of physical inconsistencies and 
improved the overall model performance. The authors emphasize 
the effectiveness of integrating physical models with deep learning 
to enhance the accuracy of aero-engine sensor fault diagnosis, 
which is critically important for flight safety and aviation mainte-
nance. 

Mowlavi and Nabi (2023) proposed an extension of the PINNs 
concept for solving optimal control problems constrained by non-
linear partial differential equations (PDEs). The authors integrated 
a PINN into the optimal control structure, approximating the state 
variable and control input with separate neural networks that are 
trained simultaneously. This approach circumvents the need for 
PDE discretization and offers flexibility in selecting the cost func-
tional. The research demonstrated that PINNs achieve comparable 
accuracy to the traditional Direct-Adjoint Looping (DAL) method 
for optimal control problems constrained by PDEs, especially for 
complex nonlinear dynamics (like the Kuramoto-Sivashinsky and 
Navier-Stokes equations). The PINN also showed advantages in 
flexibility and ease of implementation, particularly with limited 
data. The authors conclude that PINNs are a promising tool for solv-
ing PDE-constrained optimal control problems, combining accu-
racy with flexibility and straightforward implementation. 

Antonelo et al. (2024) introduced a novel approach to model-
ing and controlling dynamic systems using PINNs. This approach, 
termed Physics-Informed Neural Nets for Control (PINC), directly 
integrates physical laws into the neural network's architecture. This 
integration reduces the need for labeled data and enables more ac-
curate modeling of complex systems. The research demonstrated 
that PINC, as an extension of the PINNs concept, can effectively 
model and control nonlinear dynamic systems such as the Van der 
Pol oscillator, a four-tank system, and an electric submersible pump, 
even without relying on real-world measured data. This is achieved 
through PINC's ability to perform rapid predictions, which is crucial 
for real-time applications. The authors conclude that PINC is a 
promising tool for modeling and controlling complex dynamic sys-
tems, especially in data-limited scenarios. They emphasize that this 
approach can be beneficial across a wide range of applications, in-
cluding automatic control, modeling, and optimization. 

Bianchi et al. (2024) investigated the application of PINNs for 
estimating dynamic models of Unmanned Aerial Vehicles (UAVs). 
The authors proposed a method that directly integrates physical 
laws into the neural network's architecture. This approach enables 
effective estimation of system parameters even with limited data 
and under conditions of high uncertainty. The research showed that 
the proposed method provides a more accurate estimation of the 
UAV's state and higher computational speed compared to traditional 
methods like the Extended Kalman Filter (EKF), which is critically 
important for real-time applications. The authors concluded that in-
tegrating physical laws into neural network training significantly 
enhances the efficiency of UAV dynamic model estimation, ensur-
ing high accuracy even with limited data. This is a vital advance-
ment for autonomous control systems in the aerospace industry. 

In their article, Gu et al. (2024) presented the application of a 
PINN for modeling quadcopter dynamics. The authors integrated 
physical laws directly into the neural network's structure, enabling 
effective system parameter estimation even with limited data and 
under high uncertainty. The research demonstrated that the pro-
posed approach provides a more accurate estimation of the quad-
copter's state and higher computational speed compared to tradi-
tional methods like the Extended Kalman Filter (EKF), which is 
critically important for real-time applications. The authors conclude 
that integrating physical laws into neural network training signifi-
cantly enhances the efficiency of quadcopter dynamic model esti-
mation, allowing for high accuracy even with limited data. This is a 
vital advancement for autonomous control systems in aerospace ap-
plications 

In their study, Li and Liu (2024) introduced an innovative ap-
proach to controlling the trajectory of Automated Guided Vehicles 
(AGVs) using a PINN within a nonlinear Model Predictive Control 
(MPC) framework. The authors propose replacing traditional ordi-
nary differential equation models with a PINN, allowing for the di-
rect integration of physical laws into the neural network's training 
process. This ensures accurate modeling of AGV kinematics with-
out the need for numerical integration. The study demonstrated that 
the proposed method significantly enhances computational effi-
ciency and control accuracy compared to traditional approaches. 
The use of Theory of Functional Connections (TFC) and adaptive 
loss balancing effectively addresses challenges related to initial con-
ditions and control actions, which is crucial for real-time applica-
tions. The authors conclude that integrating PINNs into MPC is a 
promising approach for improving the accuracy and speed of AGV 
control in complex dynamic environments, providing a high level 
of adaptability and robustness to changing conditions. 

Abdulkadirov et al. (2025) introduced an innovative approach 
to modeling quadcopter dynamics using Physics-Aware Machine 
Learning (PAML). This method directly integrates the ordinary dif-
ferential equations describing UAV motion into the learning pro-
cess. A notable feature is the use of fractional derivative optimizers, 
including Riemann-Liouville, Caputo, and Grünwald-Letnikov, 
which helps reduce modeling errors and lower energy consumption 
during flight. The research showed that PAML with fractional opti-
mizers provides a more accurate quadcopter flight trajectory com-
pared to traditional PID controllers, demonstrating a 25–35% reduc-
tion in errors in spatial coordinates and a 30–44% reduction in Euler 
angles. The authors emphasize that employing physics-aware neural 
networks with fractional optimizers significantly boosts the effi-
ciency of quadcopter dynamics modeling and control, leading to 
more precise results with less energy consumption. This is critically 
important for autonomous UAVs. 

Optimization Tasks 

In this section, we limited the selection of sources, as PINNs 
are generally implemented through optimization problems involv-
ing explicit or implicit minimization of a loss functional. This opti-
mization-based formulation is universal and applies to a wide range 
of problems, including those where finding an optimum of a physi-
cal or functional characteristic is not the primary goal but is inher-
ently performed during the model training process. 

In their work, Gustafsson and Andersson (2024) investigated 
the influence of labeled data on the performance of PINNs, specifi-
cally Fully Connected Neural Network (FCNN) and Fourier Neural 
Network (FNN) architectures, in surrogate modeling and the opti-
mization of designs for flow resistance reduction. They compared 
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training approaches: physics-equation-only, data-only, and their 
combination. It was revealed that for FCNNs, the inclusion of la-
beled data significantly increased the prediction accuracy of veloc-
ity and pressure fields, especially in flow separation zones, with the 
best results obtained by reducing the weight of the data loss in the 
loss function. In contrast, for FNNs, the addition of labeled data led 
to unstable results, limiting their application. The authors concluded 
that for hydrodynamic design optimization tasks, an FCNN com-
bining physical constraints and labeled data is optimal, ensuring 
high accuracy and model stability. 

Liu et al. (2024) introduced a hybrid approach for airfoil shape 
optimization, integrating Convolutional Neural Networks (CNNs), 
PINNs, and Deep Reinforcement Learning (DRL). This method 
aims to enhance aerodynamic efficiency, specifically the lift-to-drag 
ratio, by minimizing the dimensionality of the design space. In their 
framework, CNNs are employed to compress airfoil shape parame-
ters into six key values, effectively reducing the complexity of the 
search space. PINNs are then applied for a more stable and accurate 
evaluation of aerodynamic characteristics, circumventing the con-
vergence issues often encountered with traditional methods. DRL, 
particularly based on Proximal Policy Optimization (PPO), inte-
grates both dimensionality reduction and performance evaluation. 
This allows it to identify optimal solutions and enhance the algo-
rithm's transferability. The reported results demonstrate a successful 
improvement in the lift-to-drag ratio, thereby affirming the effec-
tiveness and stability of the proposed optimization strategy. 

In their paper, Ma et al. (2025) presented a hybrid methodol-
ogy for optimizing aviation route planning, combining Physics-In-
formed Neural Networks (PINNs) with the A algorithm*. The pri-
mary goal of this research was to enhance the accuracy of wind field 
prediction and to optimize routes within a dynamic atmospheric en-
vironment. The authors utilized PredRNN for predicting wind fields 
based on ERA5 data, notably integrating physical constraints, spe-
cifically the Navier-Stokes equations, directly into the neural net-
work's loss function. This model was shown to outperform tradi-
tional approaches in prediction accuracy. Routes optimized using 
the A* algorithm, which accounted for these predicted wind condi-
tions, enabled the avoidance of unfavorable zones and a reduction 
in fuel consumption. This outcome underscores the significant ad-
vantages of employing predicted data over historical data for flight 
planning. The integration of physical constraints into the neural net-
work's training proved pivotal in enhancing prediction accuracy 
and, consequently, the effectiveness of route planning. 

Identification Tasks 

The concept of PINNs, which integrate deep learning with 
physical laws described by nonlinear partial differential equations 
(PDEs), was introduced in a seminal paper by Raissi et al. (2019). 
Their research delineates two key application areas for PINNs: solv-
ing PDEs based on data (where the network approximates the solu-
tion) and discovering unknown PDEs from data (where the network 
uncovers the equations themselves). For each, they proposed corre-
sponding algorithms suitable for both continuous and discrete time. 
Experimental results on classical problems, such as flow around a 
right angle, shock waves, and reaction-diffusion equations, convinc-
ingly demonstrated PINNs' ability to accurately reproduce physical 
solutions even with limited or noisy data. This was further validated 
by comparisons with analytical and numerical solutions. This makes 
PINNs a powerful tool for solving both forward and inverse prob-
lems in science and engineering, ensuring high accuracy with min-
imal data requirements. 

To address forward and inverse problems with noisy data, 
Yang et al. (2021) introduced an extended model of PINNs — B-
PINNs, which combines them with a Bayesian approach. This inno-
vative method integrates physical laws (via PINNs) with Bayesian 
Neural Networks (BNNs), where the BNN serves as a prior distri-
bution. The estimation of the posterior distribution is performed us-
ing Hamiltonian Monte Carlo (HMC) or Variational Inference (VI), 
allowing B-PINNs not only to form predictions but also to quantify 
aleatoric uncertainty arising from noise in the data. Experiments 
demonstrated that B-PINNs provide more accurate predictions un-
der significant noise compared to traditional PINNs by avoiding 
overfitting. Furthermore, the HMC method proved more effective 
for posterior distribution estimation, and the use of BNNs as a prior 
distribution improved accuracy. This makes B-PINNs a powerful 

tool for problems described by nonlinear PDEs with noisy data, en-
suring accurate predictions and effective uncertainty quantification. 

One of the key methods for solving inverse problems in super-
sonic compressible flows has been presented through the applica-
tion of PINNs and their extended version, XPINNs. This approach 
is distinguished by its integration of computational domain decom-
position into sub-regions, which significantly enhances the accu-
racy and expressiveness of the modeling, especially in areas with 
complex flow dynamics. To ensure the physical correctness of the 
solutions, the network's loss function integrates not only the basic 
Euler equations but also entropy conditions and conditions for the 
positivity of density and pressure. Parameter identification relies on 
density gradient data obtained from Schlieren photography, as well 
as information from inlet and partial wall boundaries. The results of 
numerical experiments, conducted on cases involving expansion 
waves, flow around a corner, and shock waves, convincingly 
demonstrate the advantages of XPINNs over PINNs in terms of gen-
eralization capability and accuracy in complex regions (Jagtap et al., 
2022). 

In their study, Hijazi et al. (2023) proposed a combination of 
model order reduction (ROM) methods, specifically POD-Galerkin, 
with PINNs to solve inverse problems related to the Navier-Stokes 
equations. The authors integrated physical equations into the 
PINN's loss function, which enabled the effective identification of 
unknown parameters, such as physical viscosity or boundary condi-
tions. Numerical experiments across three test cases (steady flow 
around a backward-facing step, flow around a circular cylinder, and 
unsteady turbulent flow around a cubic obstacle) confirmed that the 
integrated PINN model with POD-Galerkin ROM accurately iden-
tified parameters even with limited or noisy data. Crucially, this ap-
proach significantly reduced computational costs compared to tra-
ditional methods. This makes it a powerful tool for identifying pa-
rameters and boundary conditions in fluid dynamics, which is criti-
cally important for real-time applications and optimization tasks. 

An effective approach to solving inverse problems in engineer-
ing structures under various loading scenarios is presented in a pa-
per by Xu et al. (2023). This approach is based on combining PINNs 
with transfer learning. A key development in their work is a multi-
task learning method with uncertainty-weighted adjustment, which 
significantly enhances the efficiency and accuracy of PINNs in lin-
ear and hyperelastic mechanics. This allows, in particular, for the 
prediction of external loads on structures using limited displacement 
monitoring data. Numerical experiments confirmed that even with 
noisy and incomplete data, the model yields satisfactory results. 
This is attributed to the dual regularization (by physical laws and 
prior knowledge), providing better stability compared to traditional 
methods. This approach also successfully overcomes challenges re-
lated to geometric scaling and diverse loading scenarios, considera-
bly accelerating learning convergence by inheriting weights from 
pre-trained models. This paves the way for its application as surro-
gate models in real-world engineering projects. 

The research by Ma at al. (2024) presents an innovative ap-
proach to solving inverse problems for partial differential equations 
(PDEs) by integrating Lasso regression into the structure of PINNs. 
The developed Sequentially Threshold Least Squares-Lasso 
(STLasso) module, which combines Lasso regression with the Se-
quential Threshold Least Squares (STLS) algorithm, enables sparse 
regression of PDE coefficients. The integration of this module led 
to the creation of the PINN-STLasso model, capable of discovering 
underlying PDEs from data while demonstrating lower data volume 
requirements and improved interpretability. Experiments on classi-
cal inverse PDE problems showed that PINN-STLasso outperforms 
other methods, achieving lower error rates even with limited data. 
This underscores the approach's effectiveness in discovering under-
lying PDEs from real, potentially noisy, data. 

The research by Sahinet al. (2024) showcases the effective uti-
lization of PINNs for solving both forward and inverse problems 
within small deformation contact mechanics. The authors employed 
a mixed-variable PINN formulation with output transformation to 
strictly impose Dirichlet and Neumann boundary conditions. Nota-
bly, they focused on the "soft" incorporation of Karush–Kuhn–
Tucker (KKT) type inequalities directly through the loss function, 
with optimization performed using the Fisher–Burmeister function. 
Experiments on a Hertzian contact problem demonstrated that 
PINNs successfully function as Partial Differential Equation (PDE) 
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solvers, tools for enhanced data-driven modeling, inverse solvers 
for parameter identification, and fast surrogate models. The appli-
cation of Adam and L-BFGS-B optimizers, along with the fine-tun-
ing of loss weights, led to improved accuracy and reduced training 
time. The results underscore PINNs' potential as a powerful tool for 
contact mechanics problems, allowing the integration of physical 
laws and available data to achieve high accuracy even with limited 
or noisy measurements. 

Lin, Chen, Yang, Jiang, and Liu (2025) introduced a PINN-
based method for identifying aerodynamic parameters of aircraft. 
Their objective was to reduce reliance on resource-intensive tradi-
tional approaches. The authors integrated the six-degrees-of-free-
dom equations of motion as physical constraints into the neural net-
work's loss function, treating aerodynamic parameters as variables 
for identification. A study on the longitudinal motion of an aircraft 
demonstrated that this method effectively mitigates the influence of 
systemic and measurement errors, exhibiting high identification ac-
curacy even when data is noisy. Comparisons with genetic algo-
rithms and traditional neural networks confirmed PINNs' ad-
vantages in terms of accuracy and robustness against disturbances. 
Furthermore, the approach significantly reduces the required vol-
ume of experimental data, making it a promising candidate for prac-
tical application in the aviation industry. 

Prediction Tasks 

Yan et al. (2022) presented a new methodology for solving for-
ward problems in linear elasticity, particularly for plates and shells. 
This approach combines PINNs with the Extreme Learning Ma-
chine (ELM) method. The innovation lies in their sub-domain de-
composition method, which allows for the effective analysis of 
structures composed of multiple elements, as well as an improved 
solution within individual elements. Experimental results demon-
strated that the proposed methodology achieves accuracy compara-
ble to exact analytical solutions and finite element method calcula-
tions, confirming its potential for wide application in structural me-
chanics. This combination of PINNs and ELM underscores the 
promise of integrating physical laws into the neural network train-
ing process to achieve high accuracy and computational efficiency. 

The prediction of material fatigue life under conditions of lim-
ited experimental data became the focus of research by Chen et al. 
(2023). They proposed an innovative approach based on PINNs, de-
veloping a multi-level neural network architecture. A key feature 
lies in the integration of physical fatigue damage models directly 
into the activation functions of hidden layers, which allows for the 
effective combination of data with varying degrees of accuracy. Val-
idation using experimental data for two metallic materials demon-
strated that this PINN model provides physically consistent and ac-
curate fatigue life predictions even with a minimal number of train-
ing samples. Particularly important is the model's ability to extrap-
olate beyond the available data, which is critical for practical appli-
cation. Comparisons with traditional neural networks confirmed 
PINNs' superiority in terms of prediction accuracy and physical va-
lidity, underscoring the effectiveness of integrating physical 
knowledge to reduce reliance on large volumes of experimental 
data. 

Yang et al. (2024) introduced an innovative physics-guided 
neural network (PGNN) for predicting material fatigue life. Unlike 
direct prediction methods, their approach initially estimates S-N 
curve parameters (specifically, the coefficients of Basquin's equa-
tion) based on loading environment characteristics, such as stress 
concentration factor and stress ratio. This methodology significantly 
reduces problem complexity and ensures high accuracy in fatigue 
life prediction, even with limited training data, demonstrating strong 
extrapolation capabilities. PGNN's advantages over traditional arti-
ficial neural networks (ANNs) and Support Vector Regression 
(SVR) lie not only in its enhanced accuracy but also in the improved 
interpretability of results due to the model's foundation in physical 
laws, which allows engineers to make more informed decisions re-
garding structural design. 

The prediction of heat pump thermal load is the central theme 
of research by Chifu et al. (2024), where PINNs are applied. The 
essence of their approach lies in integrating thermodynamic princi-
ples directly into the neural network's loss function, effectively 
combining experimental data with theoretical knowledge about heat 
pumps. Thermal load modeling is performed as a function of input 

variables such as inlet and outlet temperatures, as well as water flow 
rate, leading to reduced model complexity and increased prediction 
accuracy compared to purely data-driven approaches. Experimental 
results demonstrated significant improvements in accuracy: a 
7.49% reduction in RMSE, a 6.49% decrease in MAPE, and a 0.02 
increase in R², even under unstable or extreme temperatures. This 
confirms that PINNs serve as an effective and less complex tool for 
thermal load prediction, without requiring detailed knowledge of 
system topology or refrigerant parameters. 

The review by Li et al. (2024) presents an analysis of contem-
porary approaches to predicting the Remaining Useful Life (RUL) 
of engineering systems, combining physical models with deep 
learning methods. This work systematically categorizes existing 
methods into three key areas: condition monitoring, fault diagnosis, 
and RUL prediction, with a particular focus on integrating physical 
knowledge into deep learning models to enhance prediction accu-
racy and interpretability. The authors emphasize that traditional 
RUL prediction approaches often face challenges such as data lim-
itations, the complexity of modeling degradation processes, and a 
lack of physical interpretation. To overcome these limitations, they 
propose the use of PINNs, which integrate physical equations di-
rectly into the neural network's structure, thereby providing im-
proved generalization capability and more accurate RUL predic-
tions. The review also discusses the challenges and opportunities in 
this field, pointing to the significant potential of such hybrid ap-
proaches for enhancing prediction accuracy and the reliability of 
technical system condition monitoring. 

The innovative Physics-Informed Neural Network Classifica-
tion (PINNC) model, proposed by Shi and Beer (2024), signifi-
cantly enhances structural reliability analysis. This development 
combines physical knowledge with deep learning methods to clas-
sify the safety or failure states of structural elements. At its core, 
PINNC integrates two types of losses—classification loss and phys-
ical loss—allowing it to simultaneously account for both actual out-
put values and their adherence to physical laws. This is achieved 
using a parametric sigmoid activation function that links output val-
ues to structural states, with the total loss calculated as a weighted 
sum of these components. Experiments demonstrated a significant 
advantage of PINNC over traditional neural networks that only con-
sider classification loss, thanks to improved classification accuracy. 
The developed adaptive training strategy, which gradually incorpo-
rates new samples close to the failure boundary, further enhances 
the model's accuracy. This underscores the effectiveness of combin-
ing physical knowledge and deep learning for robust analysis of 
complex structures. 

The importance of applying Digital Twins for the structural de-
sign and life-cycle assessment of aircraft structures is emphasized 
in the article by Tavares et al. (2024). This research highlights the 
necessity of integrating sensor data, operational inputs, and histori-
cal records to create virtual replicas of physical systems. Such an 
approach significantly improves the accuracy of predicting struc-
tural behavior and enhances their efficiency throughout their entire 
life cycle. The authors note that traditional numerical models are 
often unable to adequately reflect real-world behavior due to mate-
rial variations and manufacturing deviations, proposing Digital 
Twins as a solution. Additionally, the paper discusses the use of 
PINNs for addressing various uncertainties in structural analysis. 
These hybrid approaches, combining experimental data with nu-
merical models, contribute to a more adaptive strategy for ensuring 
the structural integrity and safety of aircraft throughout their opera-
tional life. 

A new approach for predicting the remaining useful life (RUL) 
of fatigue crack growth has been proposed by Liao et al. (2025), 
leveraging PINNs. This work aimed to develop a method that com-
bines experimental data with fundamental physical laws to accu-
rately determine parameters for crack growth models and subse-
quently predict the RUL of structures. The key lies in the integration 
of physical knowledge directly into the neural network's structure to 
enhance the reliability of predictions. The proposed method effec-
tively establishes the relationship between crack length and the 
number of loading cycles through automatic differentiation. A spe-
cially designed loss function, which incorporates physical con-
straints, allows for the simultaneous updating of physical model pa-
rameters during network training. The results demonstrated that the 
predicted RUL is significantly more accurate and reliable compared 
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to traditional methods, with all predicted values falling within a 1.5-
fold error margin. This approach is particularly valuable for scenar-
ios with limited access to experimental data, reducing the reliance 
on large quantities of measurements. 

Publications Related to Tier 4: Systems-Level 

Analysis 

This section surveys research where PINNs are used to model 
complex, interconnected aerospace systems at a higher level of ab-
straction. The focus is on tasks involving system-level behavior, 
multi-domain interactions, and environmental implications—such 
as the simulation of coupled subsystems, assessment of operational 
limits, or prediction of external effects like noise and emissions. 

The review highlights how PINNs are applied to represent 
physical processes within integrated architectures, where outputs 
from one model inform or constrain another. Also considered are 
studies where PINNs serve as lightweight surrogates for system-
level evaluations, balancing model fidelity with computational trac-
tability in simulations involving large or coupled physical domains. 

Model testing and validation 

An innovative approach to solving inverse problems in contin-
uum mechanics is presented in a study by Xu et al. (2023). This 
approach is based on PINNs, integrating transfer learning and multi-
task learning with uncertainty weighting. The goal was to enhance 
the efficiency and accuracy of identifying loads in structures with 
varying geometries and loading conditions, relying on limited dis-
placement data. The essence of the approach lies in pre-training the 
model on simplified scenarios followed by re-training for specific 
cases. This allows the model to adapt to new conditions with mini-
mal computational cost. The results showed that the proposed 
method can accurately predict external loads even with limited or 
noisy data. PINNs trained with transfer learning demonstrated high 
robustness to noise and fast convergence when adapting to new sce-
narios, outperforming traditional methods like finite element analy-
sis in terms of generalizability and efficiency. This underscores that 
the integration of transfer learning with PINNs significantly ex-
pands the capabilities for solving engineering inverse problems, re-
ducing the need for large volumes of data and computational re-
sources, and opening avenues for real-time structural health moni-
toring and damage detection. 

The assessment of PINNs efficacy in high-fidelity reconstruc-
tion of two-dimensional flow fields around a cylinder is a key aspect 
of research by Yang et al. (2023). This work aimed to determine 
PINNs' ability to reconstruct full velocity and pressure fields based 
on limited or noisy data, a common challenge in experimental fluid 
dynamics. Both numerical data obtained through Direct Numerical 
Simulation (DNS) and experimental measurements from Particle 
Image Velocimetry (PIV) were used to train the PINN. The results 
demonstrated that PINNs outperform traditional methods, such as 
cubic spline interpolation and classical neural networks, providing 
more accurate reconstruction of velocity and pressure distributions, 
even under noisy or sparse data conditions. This confirms PINNs' 
ability to effectively integrate physical laws, particularly the Navier-
Stokes equations, into the training process, which significantly im-
proves the accuracy of physical field reconstruction. The authors 
underscore the significant potential of PINNs for applications where 
traditional methods are limited by data quality or volume, as the in-
tegration of physical laws into the network structure ensures adher-
ence to physical constraints. 

A novel PINNs architecture, named WaveNets, was introduced 
for the full reconstruction of rotational flow fields under large, high-
amplitude periodic water waves. This model, developed by Chen et 
al. (2024), comprises two distinct neural networks: one predicts the 
free surface profile, and the other predicts the velocity and pressure 
fields. Its loss function meticulously integrates Euler's equations 
and other physical knowledge about wave processes. It also utilizes 
a novel dynamic sampling point updating method for residual eval-
uation, which is critically important given that the free surface forms 
during training. Thanks to highly accurate datasets generated by the 
numerical continuation method, WaveNets is capable of recon-
structing the wave surface and flow field using only a small amount 
of data, both on the surface and within the flow, for both single-layer 
and two-layer rotational flows. The accuracy of vorticity estimation 

can be significantly improved by adding a redundant physical con-
straint according to prior information about its distribution, under-
scoring the model's effectiveness under conditions of strong nonlin-
earity and complex free surface geometry. 

The construction of a metamodel based on PINNs for predict-
ing Reynolds-averaged separated turbulent flow around a 
DU99W350 airfoil at varying angles of attack is a central aspect of 
the research by Harmening et al. (2024). The model was trained on 
a limited set of simulation data for specific angles of attack, demon-
strating the ability to predict velocity and pressure fields for arbi-
trary angles within the range of 10.0° to 17.5°, encompassing both 
interpolation and extrapolation. The results showed successful pre-
diction of flow separation development on the airfoil's upper surface 
with changing angles of attack, achieving high accuracy, even near 
the wall. The sensitivity analysis conducted concerning the Reyn-
olds number, the quantity and distribution of training data, and the 
choice of turbulence model, highlighted the advantages of the Reyn-
olds pseudo-stress method and the importance of having labeled 
data within the domain. This research confirms the effectiveness of 
PINNs for creating accurate surrogate models of flow around air-
foils with variable geometry, thereby reducing the need for exten-
sive simulation 

A highly efficient framework for PINNs to identify parameters 
of beam structural models is presented in a study by Teloli et al. 
(2025). The work aimed to solve inverse problems in structural 
analysis, specifically determining mechanical properties like stiff-
ness and mass, based on limited displacement and strain data. A key 
feature is the integration of physical laws, particularly beam theory 
equations, directly into the neural network's training process. This 
ensures the physical consistency of results even with limited or 
noisy data. The research demonstrated that the proposed approach 
can accurately recover model parameters even under uncertain 
boundary conditions and with a limited volume of data. It also 
showed high accuracy in predicting the dynamic behavior of beam 
structures compared to experimental data. This underscores the 
model's ability to generalize and apply to various scenarios without 
needing extensive training data, opening possibilities for real-time 
condition monitoring and damage diagnosis. 

The PINN framework developed by Zhu et al. (2025) offers a 
simultaneous approach for discovering hidden solid boundaries and 
reconstructing flow fields based on limited observations. The mod-
el's uniqueness lies in the integration of a fractional body parameter 
into the governing equations, which allows for adherence to no-pen-
etration and no-slip conditions in solid regions while preserving hy-
drodynamic conservation laws. This enables the simultaneous re-
construction of an unknown flow field and the determination of the 
body's fractional distribution, thereby detecting hidden boundaries. 
Testing the framework across diverse scenarios, including incom-
pressible Navier–Stokes flows and compressible Euler flows (e.g., 
steady flow around a fixed cylinder, oscillating cylinder, and sub-
sonic flow over an airfoil), demonstrated accurate hidden boundary 
detection, reconstruction of missing flow data, and estimation of 
moving body trajectories and velocities. Further analysis confirmed 
the method's robustness to sparse data, velocity-only measurements, 
and noise, making it a promising tool for applications where only 
limited experimental or numerical data are available, particularly in 
aerodynamics, biomedical imaging, and marine engineering. 

Safety-oriented physical condition modeling 

For safety-oriented physical condition modeling, particularly 
in the context of analyzing temperature fields and thermal loads in 
critical systems, the research by Cai et al. (2021) demonstrates sig-
nificant potential. This work explores the application of PINNs to 
solve inverse heat transfer problems in forced and mixed convection 
regimes, as well as the Stefan problem with a moving phase-change 
boundary. This is especially relevant in situations with limited or 
unknown boundary conditions where traditional methods prove in-
effective. PINNs demonstrated the ability to accurately reconstruct 
temperature and velocity fields, and successfully recover the posi-
tion of the moving boundary and corresponding fields using only a 
limited number of internal temperature measurements. This in-
cluded the successful modeling of thermal processes in complex 
power electronics thermal design. Thus, PINNs are a powerful tool 
for solving ill-posed heat transfer problems, unifying computational 
and experimental approaches, which is critically important for 
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predicting potentially unsafe system operating modes in the interest 
of safety. 

A method for identifying parameters of structural systems with 
multiphysics damping, based on PINNs, is presented in a study by 
Liu and Meidani (2023). Their development, named PIDynNet, 
aims to accurately determine the parameters of nonlinear structural 
systems, accounting for the complex interaction between mechani-
cal and thermal processes. The essence of this approach lies in inte-
grating physical laws describing structural dynamics and heat trans-
fer directly into the neural network's architecture. This allows the 
model to learn from limited data while maintaining high physical 
fidelity in its results. The research showed that PIDynNet can accu-
rately identify parameters even with limited or noisy data, success-
fully predicting the system's nonlinear response to unknown excita-
tions. For effective training, subsampling and early stopping strate-
gies were employed, which helped prevent overfitting and im-
proved accuracy. This capability for accurate parameter identifica-
tion in complex systems is critically important for structural integ-
rity monitoring and assessing stability after, for instance, natural dis-
asters, providing a basis for making safety-related decisions. 

The modeling of finite deformation plasticity is the primary 
focus of research by Niu et al. (2023), which employs PINNs. The 
work aimed to develop an approach that accurately reproduces the 
behavior of materials during large deformations, including multi-
step loading and unloading scenarios. The proposed PINN model 
directly integrates the physical laws describing the plastic behavior 
of materials into the neural network's structure, ensuring the physi-
cal consistency of results even when trained on limited data. The 
results demonstrated that the PINN model can accurately reproduce 
material behavior under finite deformations, successfully predicting 
the system's nonlinear response to multi-step loading and unloading, 
and exhibiting significant generalization capability. Furthermore, 
the performance of the PINN was evaluated in terms of accuracy 
and stability with mesh refinement and changes in network archi-
tecture. This ability to accurately model material behavior in critical 
pre-failure states is extremely important for ensuring the reliability 
and safety of engineering structures, allowing for the prediction of 
potential problems even with limited experimental data. 

In the study by Chen et al. (2024), significant advancements 
have been made in modeling crack propagation and predicting the 
fatigue life of structures using PINNs. This research focuses on de-
veloping a methodology capable of accurately modeling crack be-
havior in materials under overload conditions. A key aspect of their 
work is the integration of asymptotic displacement functions near 
the crack tip into the PINN structure, which ensures highly accurate 
computation of stress intensity factors without the need for local 
mesh refinement. An automated crack propagation modeling 
method was proposed that does not require changes to the network 
architecture or node distribution during the process, only modifica-
tions to the loss functions. Additionally, an algorithm for fatigue life 
prediction under overloads was developed, which accurately pre-
dicts crack propagation delay and the overall life of structures under 
cyclic loading with periodic overloads. Such a capability for pre-
cisely predicting crack behavior, especially under overload condi-
tions, is critically important for maintaining the safety and reliability 
of complex engineering systems, where monitoring critical states 
and predicting remaining useful life play a crucial role. 

For the purposes of Safety-oriented physical condition model-
ing, particularly in the context of preventing failures due to stress 
concentration, Imran Azeem and Pinho (2024) developed a physics-
informed machine learning model for predicting stresses in compo-
site structures with open holes, accounting for finite-size effects. 
The goal of this work was to create a fast and accurate method for 
stress prediction within a global-local modeling context, which is 
crucial for aircraft design. Traditional analytical solutions often fail 
to consider finite-size effects, and semi-analytical methods have 
limited accuracy. The proposed model, which combines analytical 
solutions with machine learning methods, demonstrated accuracy 
comparable to analytical solutions for infinite width, and surpassed 
them in cases of finite dimensions. It provides highly accurate stress 
predictions under uniaxial and biaxial loading, utilizing signifi-
cantly less training data due to the integration of analytical solu-
tions. This allows for reduced computational costs and increased 
prediction accuracy, both of which are critically important for en-
suring structural integrity and safety in aerospace engineering. 

Modeling the behavior of materials under simultaneous ther-
mal and mechanical loads, which is critically important for safety-
oriented physical condition modeling in geotechnical and other ap-
plications, is the central theme of research by Yang et al. (2024). 
They proposed the application of PINNs to solve the problem of 
thermoelastic cavity expansion under plane strain conditions. The 
authors formulated the relevant partial differential equations, nor-
malized them into dimensionless form, and integrated them into the 
PINN structure. This allowed the model to learn based on physical 
laws without the need for extensive experimental data. The study's 
results showed that the proposed PINN model can accurately pre-
dict temperature, stress, and strain distributions, which is confirmed 
by comparison with analytical solutions. Furthermore, the model 
demonstrated stability and efficiency in solving problems with var-
ious material parameters and loading conditions, indicating its ver-
satility and potential for accurate prediction of critical states in com-
plex thermoelastic processes. 

The method of PINNs developed by Liao at al. (2025) is de-
signed for identifying parameters and predicting the remaining use-
ful life (RUL) of fatigue crack growth. This research aimed to create 
a model that accurately determines crack growth parameters and 
forecasts their future development, which is crucial for assessing the 
durability of structures. A key feature of the proposed approach lies 
in the integration of physical laws describing the crack growth pro-
cess directly into the neural network's structure. This allows the 
model to learn from limited data while maintaining high physical 
fidelity and accuracy of results. Experimental data confirmed that 
PINNs can accurately reproduce fatigue crack growth behavior and 
predict the RUL of structures, even under limited or noisy data con-
ditions. The model successfully identified key parameters influenc-
ing crack growth and demonstrated its ability to generalize. This 
methodology, which provides reliable predictions even with re-
stricted data, is particularly valuable for ensuring the reliability and 
structural health monitoring of engineering structures, where accu-
rate prediction of critical damage is essential for safe operation. 

Subsystem interaction modeling 

An innovative approach to solving complex multi-physical 
problems was presented by Nguyen et al. (2022) in their work. They 
developed a new methodology called PINNs-DDM, which effec-
tively integrated PINNs with the Domain Decomposition Method 
(DDM). This synergy allowed for accurate modeling of interactions 
between various physical processes, such as fluid dynamics and sca-
lar transport in confined spaces. Practical application of the method 
to Poisson and Burgers' equations, as well as in aerosol dispersion 
modeling, confirmed its high accuracy even with a limited amount 
of training data, which is critically important for real-world applica-
tions. The authors emphasized that PINNs-DDM is a flexible and 
efficient tool, capable of adapting to different types of differential 
equations and conditions, thus opening new possibilities for sys-
temic analysis. 

A significant contribution to the field of identifying nonlinear 
structural systems with multi-physical damping properties, particu-
larly interactions with a thermal environment, was made by Liu and 
Meidani (2023). They presented an innovative method called PI-
DynNet, which effectively combined PINNs with additional loss 
functions. This allowed for increased accuracy in estimating system 
parameters, considering both structural dynamics and heat transfer. 
The research demonstrated that PIDynNet surpassed traditional 
methods, such as the Extended Kalman Filter, providing more pre-
cise identification and the ability to generalize nonlinear responses 
to new excitations, even with limited data. The authors emphasized 
that integrating physical knowledge into the neural network's struc-
ture significantly improved the efficiency of identifying nonlinear 
parameters in limited and noisy data environments. 

The application of PINNs for predicting the separated turbu-
lent Reynolds flow field around a DU99W350 airfoil at varying an-
gles of attack became a central achievement in the study by Har-
mening et al. (2024). They successfully created a data-driven meta-
model that effectively predicted the spanwise-averaged velocity and 
pressure in the flow, utilizing a limited set of numerical simulations. 
This model was trained by incorporating boundary conditions and 
the Navier-Stokes equations, which guaranteed the physical correct-
ness of the results. The research showed that the developed PINN 
accurately predicted the evolution of flow separation on the airfoil's 
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suction surface across an angle of attack range from 10° to 17.5°, 
maintaining high accuracy even near the wall. This confirmed the 
potential of PINNs as a powerful tool for creating surrogate flow 
models under data-limited conditions. 

A recent study by Beitalmal (2025) presented a ground-break-
ing hybrid methodology for addressing complex multiscale fluid-
structure interaction (FSI) challenges. This novel approach master-
fully combined PINNs and the finite element method (FEM). A key 
aspect of their work involved utilizing PINNs to meticulously 
model microscopic phenomena, such as turbulence, specifically at 
the fluid-structure boundaries. This setup facilitated a dynamic, 
two-way data exchange with the FEM component. The results were 
quite impressive: their proposed model delivered a fivefold im-
provement in computational speed when benchmarked against con-
ventional LES-FEM methods. Furthermore, it exhibited a 20% gain 
in accuracy for tasks like simulating wind turbine blade vibrations 
and precisely identifying arterial stiffness, outperforming purely 
FEM-driven solutions. This research compellingly illustrated the 
power of merging the physically-informed capabilities of neural 
networks with the well-established accuracy of FEM, ultimately 
leading to substantial reductions in computational burden. 

In a study, Bianchi et al. (2025) introduced an innovative ap-
proach to evaluating the dynamic model of unmanned aerial vehi-
cles (UAVs) using PINNs. Their methodology integrated physical 
laws directly into the neural network's architecture, which allowed 
for efficient resolution of UAV system identification problems even 
with limited, nonlinear, and noisy data. The research demonstrated 
that the proposed PINN method surpassed the traditional Extended 
Kalman Filter (EKF) in both accuracy and computational speed, 
providing enhanced adaptability and reduced computational costs, 
critically important for real-time applications. This approach high-
lighted the potential of PINNs as a robust tool for modeling and 
evaluating complex dynamic systems while minimizing the need for 
continuous network retraining. 

Environmental variable prediction 

A novel approach to predicting troposphere temperature was 
presented by Chen et al. (2021), who developed a Physics-informed 
Generative neural network (PGnet). This innovative model com-
bined fundamental physical constraints, describing heat transfer and 
diffusion processes, with the powerful capabilities of deep learning 
to achieve significantly more accurate forecasts of 500 hPa temper-
ature fields. PGnet functioned in two stages: first, physically-con-
strained prediction, followed by result correction using a generative 
neural network that employed a mask to identify and improve low-
quality predictions. Experiments with ERA5 data confirmed the su-
periority of PGnet-Momentum over traditional methods (CDNN, 
ConvLSTM, DeepRNN), demonstrating the lowest Mean Squared 
Error (MSE = 8.877), the highest correlation coefficient (CORR = 
0.9860), and improved SSIM and PSNR metrics. This underscored 
the effectiveness of integrating physical laws and deep learning for 
accurate prediction of complex atmospheric phenomena. 

An approach to reconstructing acoustic fields in pipes, partic-
ularly under conditions of limited and noisy measurements, was 
proposed by Luan et al. (2025a). Their research demonstrated how 
PINNs can effectively recover acoustic fields, even when radiation 
parameters remain unknown. A key achievement was the model's 
ability to accurately reconstruct acoustic fields using only pressure 
data from the pipe's outlet end. Importantly, their Fine-Tuning PINN 
(PINN-FTM) method showed higher accuracy and noise robustness 
compared to traditional optimization methods. Thus, the authors 
proved that PINNs are a highly promising tool for solving inverse 
problems in acoustic analysis under data-insufficient conditions, 
which is critically important for evaluating the acoustic characteris-
tics of systems where classical approaches cannot be applied. 

In the realm of near-field acoustic field reconstruction, Luan et 
al. (2025b) introduced the Physics-Informed Neural Network-
Driven Sparse Field Discretization (PINN-SFD) methodology. This 
approach innovatively combined physics-informed neural networks 
with sparse field discretization, integrating the Kirchhoff-Helm-
holtz integral as a wave propagation model. Importantly, the method 
did not require a large training dataset and operated in a self-learn-
ing mode. Experimental data confirmed that PINN-SFD ensured 
high accuracy in reconstructing acoustic fields across various vibra-
tional modes, surpassing the traditional Compressive-Equivalent 

Source Method (C-ESM). An additional advantage was its reduced 
sensitivity to regularization parameters, making it particularly valu-
able for practical application in conditions of limited data and com-
plex vibrational modes. 

Focusing on the "gradient pathology" issue in traditional 
PINNs, which leads to inaccurate predictions, Chatterjee et al. 
(2024) developed and implemented a modified loss function in 
MATLAB. This modification substantially increased approxima-
tion accuracy without additional computational cost. Their research 
demonstrated how the updated PINNs effectively solved both direct 
and inverse problems in structural vibrations, specifically for single 
and two-degree-of-freedom systems. The choice of MATLAB for 
implementation made this tool accessible and convenient for a 
wider scientific audience, including those not working with Python. 
The authors indicated the promise of this approach for aerospace 
engineering, especially in tasks related to vibrations and the dy-
namic behavior of structures. 

A new model for predicting aviation noise in airports was de-
veloped by Zhu et al. (2024), who successfully integrated the phys-
ical principles of the ECAC model with deep learning capabilities. 
This approach ensured a combination of the stability of physically-
oriented methods with the high data accuracy characteristic of deep 
learning approaches. Their model achieved a mean absolute error of 
just 0.98 dBA when predicting sound exposure levels, indicating its 
exceptional effectiveness. The research showed that this hybrid 
model surpassed both purely physically-oriented and exclusively 
data-driven models in prediction accuracy and generalization abil-
ity, underscoring that the integration of physical knowledge signifi-
cantly increased the stability and reliability of predictions, even in 
data-limited conditions. 

The following collection of studies showcases the broad spec-
trum of applications for PINNs in modeling environmental and hy-
drodynamic processes. While not directly focused on the aerospace 
industry, these investigations offer valuable methodological ap-
proaches. For instance, Chuprov et al. (2025) developed a PINN for 
the inverse solution of the advection-diffusion problem aimed at lo-
calizing atmospheric pollution sources, revealing the model's high 
accuracy and stability. Gomes et al. (2022) demonstrated that incor-
porating parametric coefficients into PINNs significantly improved 
the prediction of boundary layers in reaction-advection-diffusion 
problems. In their work, Hu and Kabala (2023) applied PINNs to 
model aerosol-cloud-precipitation interactions based on the concep-
tual Koren–Feingold scheme, ensuring accurate reconstruction of 
spatiotemporal changes with limited data. Another important area 
of research involves analyzing pollutant transport in soils and water. 
Ke et al. (2025) showed that pre-trained PINNs successfully solved 
both direct and inverse transport problems in porous media even 
with noisy observations, while Omarova et al. (2023) employed a 
PINN to simulate river silting, reproducing velocity and pressure 
distributions with high fidelity. Qi et al. (2024) developed PINN 
models for 2D shallow water equations that did not require labeled 
data and demonstrated competitive accuracy compared to finite vol-
ume methods. Finally, Ranjith (2023) proved that PINNs can model 
pollutant propagation in obstructed environments with extremely 
fast computation speeds and high accuracy. All these studies con-
firm the flexibility and effectiveness of PINNs in approximating 
pollution fields, forecasting hydrodynamic or atmospheric varia-
bles, and reconstructing complex physical processes. Despite lack-
ing a direct connection to aerospace systems, the methodological 
advancements from this research can be adapted for modeling the 
environmental impacts of aerospace activities, specifically in pre-
dicting noise fields, emissions, and atmospheric interactions. 

Discussion 

The idea to undertake this review was inspired by the study of 
Ghalambaz et al. (2024), which documented a sharp surge in re-
search activity related to Physics-Informed Neural Networks 
(PINNs). In 2019, only 37 papers were published on the topic, 
whereas by the end of 2022, the number had increased to 527, with 
a cumulative corpus of 996 reviewed publications. Such dynamics 
suggest a transition of PINNs from a niche approach to a main-
stream tool within the domain of scientific machine learning. This 
rapid development motivated the present work. Initially, we antici-
pated the emergence of underrepresented domains in the application 
landscape of PINNs and thus designed a deliberately 
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comprehensive and even somewhat redundantly detailed taxonomy 
to capture such gaps. 

The proposed four-tier taxonomy served not only as a concep-
tual framework but also as a methodological instrument for struc-
turing the literature review. Grounded in physical, operational, and 
systemic characteristics of aerospace engineering tasks, it encom-
passes Physical Modeling, Dynamic Analysis, Functional Evalua-
tion, and System-Level Assessment. All selected sources were cat-
egorized in accordance with this framework, and each tier was pop-
ulated with relevant examples, confirming the comprehensiveness 
of the classification. 

As the literature review progressed, the suitability of the tax-
onomy became increasingly evident. Although the availability and 
accessibility of studies varied across tiers, representative applica-
tions of PINNs were identified in all categories. In some instances, 
locating pertinent sources required a broader disciplinary search, 
but their relevance to the defined categories was consistently sub-
stantiated. The resulting structure emerged not as a theoretical ab-
straction, but as a practically validated scheme for organizing exist-
ing research. 

Early assumptions concerning the lack of studies in areas such 
as acoustics, optics, or environmental impact assessment did not 
hold. While these domains are indeed less frequently addressed 
compared to more established fields like aerodynamics or structural 
mechanics, publications were nonetheless found that demonstrate 
the feasibility of applying PINNs to such problems. This suggests 
that these areas are not entirely unexplored but are still in the early 
stages of methodological development, requiring further scholarly 
attention to mature into fully fledged subfields. 

One recurring observation in the literature is the absence of 
standardized approaches to PINN implementation. Most studies 
feature bespoke neural network architectures and problem formula-
tions tailored to specific tasks. As a result, generalizations regarding 
methodological limitations remain elusive. The diversity of ap-
proaches reflects both the flexibility of the framework, and the chal-
lenges associated with its formal consolidation. The lack of conver-
gence toward canonical practices highlights the need for future ef-
forts aimed at formalizing design strategies and training procedures. 

Although we initially intended to synthesize the reviewed stud-
ies into a unified analytical model, this proved impractical due to 
the broad and even coverage of all tiers of the taxonomy. The pres-
ence of relevant research across the entire framework precluded the 
identification of structural voids that could serve as anchor points 
for comparative or meta-analytic synthesis. Nevertheless, the tax-
onomy itself serves as a valuable outcome of this study, offering a 
coherent system for classifying PINNs applications in aerospace 
contexts and guiding subsequent research trajectories. 

In summary, the review confirmed the validity of the proposed 
classification and revealed a wide distribution of PINNs applica-
tions across the aerospace domain. While the current research land-
scape is characterized by methodological diversity and the absence 
of uniform implementation strategies, the breadth of existing appli-
cations underscores the adaptability and relevance of PINNs for 
complex engineering tasks. Moving forward, the focus may shift 
from discovering novel application areas to the consolidation of 
methodological standards and the refinement of theoretical under-
pinnings that will support broader and more robust integration of 
PINNs into aerospace system design and analysis. 

Limitations and Future Directions of the 

Taxonomy 

The proposed four-tier taxonomy, while methodologically 
grounded and sufficiently comprehensive for the scope of this re-
view, was intentionally designed with a degree of redundancy. This 
is evident in the observation that certain studies could reasonably be 
assigned to more than one tier, a feature that reflects the inherent 
interdisciplinarity of aerospace tasks and was anticipated during the 
taxonomy’s development. 

Despite this flexibility, a notable limitation of the current 
framework lies in its initial omission of a category that addresses 
the relationship between design parameters and manufacturing out-
comes. Specifically, we now identify a prospective fifth tier, which 
we propose to name Tier 5. Applied Manufacturing Perfor-
mance. This category encompasses research focused on predicting 
the realized properties of manufactured components—such as com-
posite structures—based on process-sensitive parameters originat-
ing from the design phase. It bridges a critical methodological gap 
between abstract physical modeling and the empirical realities of 
production, where fabrication methods and tolerances substantially 
affect structural performance and reliability. 

The absence of this tier in the original formulation was due to 
the assumption that the volume of relevant studies would be insuf-
ficient for meaningful analysis. However, subsequent literature 
mapping has revealed a growing interest in this direction, and we 
therefore recognize the value of integrating this domain into future 
iterations of the taxonomy. 

Conclusions 

This review introduced and validated a four-tier taxonomy for 
classifying applications of Physics-Informed Neural Networks 
(PINNs) in aerospace engineering. The taxonomy—comprising 
Physical Modeling, Dynamic Analysis, Functional Evaluation, and 
System-Level Assessment—proved adequate for organizing a 
broad and diverse body of literature. Each tier was supported by 
representative implementations, confirming the taxonomy’s practi-
cal relevance. 

The distribution of sources across all levels revealed a wider-
than-expected application landscape. Areas initially presumed un-
derrepresented, such as acoustics or environmental impact analysis, 
were found to be present, albeit less developed. This outcome 
demonstrates that PINNs have already been applied across the full 
spectrum of aerospace tasks and confirms the flexibility of the pro-
posed classification. 

While methodological diversity across studies precluded gen-
eralization or meta-analysis, the taxonomy itself offers a foundation 
for further systematization. Its utility lies in guiding the mapping, 
comparison, and future refinement of PINNs applications. 

As the field progresses, there is a growing need for methodo-
logical consolidation. Future research should aim to establish 
benchmark tasks, standardize evaluation protocols, and expand the 
taxonomy to include domains such as manufacturing-aware model-
ing, thus supporting reproducibility and scalability in aerospace sys-
tem design. 
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