Mathematical model for heat transfer in variable thickness fins for rocket engines

Authors

Keywords:

variable thickness fin, mathematical model of heat transfer, liquid propellant rocket engine, cooling system of engine chamber, additive manufacturing, fin efficiency

Abstract

Purpose. This article aims to develop a mathematical model for a fin in the cooling system of liquid propellant rocket engines. The objective is to enable calculations for fins with arbitrary thickness variation. The developed mathematical model will be valuable and in demand for calculating heat transfer in the chambers of liquid propellant rocket engines produced using additive manufacturing technologies. Design / Methodology / Approach. The study employs theoretical research methods. The temperature distribution along the fin's height is derived by applying established heat transfer laws to the control volume under consideration. Findings. The study resulted in a mathematical model for a fin of variable thickness. The model was transformed into a dimensionless form to improve the accuracy of solving the equation numerically. Next, test calculations were performed using the proposed model. Theoretical Implications. This study builds upon existing models of heat transfer in fins and significantly extends the scope for further analysis by allowing for arbitrary variations in fin thickness. Practical Implications. The developed mathematical model can be applied to calculate the fin efficiency when designing cooling systems for combustion chambers, gas generators, and other components of liquid propellant rocket engines. Originality / Value. The article presents an original approach to calculating heat transfer in fins with variable thickness, enhancing its value for practical calculations. It can also serve as a reference for developing similar mathematical models. Research Limitations / Future Research. This study is focused on fins used in the cooling systems of liquid propellant rocket engine chambers. Therefore, the developed model is applicable only to fins where the longitudinal dimension significantly exceeds the transverse dimension. Future research could explore optimizing fin shapes to enhance heat transfer efficiency. Article Type. Applied Research.

PURL: https://purl.org/cims/2403.005

Downloads

Download data is not yet available.

References

Bondarenko, O., & Tkachov, Y. (2024). Удосконалення масової ефективності силового корпусу насоса високого тиску. Journal of Rocket-Space Technology, 33(4), 118-124. https://doi.org/10.15421/452416

Desai, R. P., & Kuzhiveli, B. T. (2022, May). Integrated modular design and analysis of liquid propellant rocket engine working on liquid methane-oxygen expander cycle. In IOP Conference Series: Materials Science and Engineering (Vol. 1240, No. 1, p. 012014). IOP Publishing. http://dx.doi.org/10.1088/1757-899X/1240/1/012014

Dubrovskiy, I., & Bucharskyi, V. (2023). Devising a method to design supersonic nozzles of rocket engines by using numerical analysis methods. Eastern-European Journal of Enterprise Technologies, 126(1), 61–67. https://doi.org/10.15587/1729-4061.2023.290583

Leonardi, M., Pizzarelli, M., & Nasuti, F. (2019). Analysis of thermal stratification impact on the design of cooling channels for liquid rocket engines. International Journal of Heat and Mass Transfer, 135, 811-821. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.028

Vekilov, S. S., Lipovskyi, V. I., & Marchan, R. A. (2021). Features of the adaptation of 3D printed regenerative cooling channels of the LPRE throat inserts. System design and analysis of aerospace technique characteristics, 29(2), 62-72. https://doi.org/10.15421/472112

Yang, J., & Naraghi, M. H. (2020). A fin analogy model for thermal analysis of regeneratively cooled rocket engines. In AIAA Propulsion and Energy 2020 Forum (p. 3817). https://doi.org/10.2514/6.2020-3817

Алєксєєнко, В., & Бучарський, В. (2024). Математична модель системи наддування паливних баків з урахуванням теплообміну. Challenges and Issues of Modern Science, 2, 91-95. https://cims.fti.dp.ua/j/article/view/162

Бучарський, В., & Слюсарєв, В. (2024). Диференційна модель тракту охолодження камери РРД. Challenges and Issues of Modern Science, 2, 87-90. https://cims.fti.dp.ua/j/article/view/156

Золотько, О. (2024). Аналіз можливості удосконалення сопел ракетних двигунів. Challenges and Issues of Modern Science, 2, 111-114. https://cims.fti.dp.ua/j/article/view/191

Мітіков, Ю., & Седченко, М. (2023). Критичний аналіз гелієвих газобалонних систем наддування паливних баків ракетних двигунів. Challenges and Issues of Modern Science, 1, 117-125. https://cims.fti.dp.ua/j/article/view/23

Downloads

Published

2024-11-26

Issue

Section

Engines, Energy and Thermotechnics

How to Cite

Sliusariev, V., & Bucharskyi, V. (2024). Mathematical model for heat transfer in variable thickness fins for rocket engines. Challenges and Issues of Modern Science, 3, 48–54. https://cims.fti.dp.ua/j/article/view/234

Share