Microplastics in agricultural soils: sources and microbial remediation approaches

Authors

Keywords:

microplastics, agricultural soils, agroecosystems contamination, microbial remediation, biofilm formation

Abstract

Purpose. The purpose of this study was theoretical analysis of the sources of microplastics in agricultural soils, its impact on agroecosystems and microbial remediation approaches to remove microplastics from the soil. Design / Method / Approach. Given the complex and multifaceted nature of the research topic, a complex of general scientific methods was used to achieve the research goal: analytical, synthetic, hermeneutic, pragmatic, generalization. Findings. The sources of microplastics in agricultural soils are plastics used to cover fertilizers, pesticides and seeds, film for mulching, use of wastewater for irrigation, sludge from wastewater treatment as fertilizers that can lead to the occurrence of environmental risks for the functioning of agroecosystems and human health. Microbial remediation is a promising direction for the removal of microplastics from agricultural soils. Theoretical Implications. Generalized information on the sources of microplastics in agricultural soils, the consequences for agroecosystems of this type of pollution, as well as microbial remediation approaches for the removal of microplastics are presented, which expands the understanding of microplastics as a pollutant of agroecosystems. Practical Implications. The given information will contribute to the growth of research into the level of contamination of agricultural soils with microplastics, in particular, in Ukraine, and the formation of biofilms of soil microorganisms-biodegraders on the surface of microplastics (with attention to sulfate-reducing bacteria), including influence of various toxicants on these processes. Originality / Value. The theoretical and practical issues of contamination of agricultural soils with microplastics are summarized with emphasis on biofilm formation as an important stage of microbial remediation. Research Limitations / Future Research. In Ukraine, the level of contamination of agricultural soils with microplastics, the impact of toxicants on the biofilm formation by soil microorganisms-biodegraders on the surface of microplastics (with attention to sulfate-reducing bacteria) have not been determined and further research on this issue is needed. Paper Type. Review.

PURL: https://purl.org/cims/2403.034

Downloads

Download data is not yet available.

References

Arab, M., Yu, J., & Nayebi, B. (2024). Microplastics in Sludges and Soils: A Comprehensive Review on Distribution, Characteristics, and Effects. ChemEngineering, 8(5), 86. https://doi.org/10.3390/chemengineering8050086

Bao, X., Gu, Y., Chen, L., Wang, Z., Pan, H., Huang, S., Meng, Z., & Chen, X. (2024). Microplastics derived from plastic mulch films and their carrier function effect on the environmental risk of pesticides. Sci. Total. Environ., 924, 171472. https://doi.org/10.1016/j.scitotenv.2024.171472

Bhatt, P., Verma, A., Gangola, S., Bhandari, G., & Chen, Sh. (2021). Microbial glycoconjugates in organic pollutant bioremediation: recent advances and applications. Microb. Cell Fact., 20, 72. https://doi.org/10.1186/s12934-021-01556-9

Biswal, T., & Malik J. A. (2022). Role of biofilms in bioremediation. In J. Ah. Malik (Ed.), Microbes and Microbial Biotechnology for Green Remediation, Chapter 11, (pp. 205-225). Elsevier. https://doi.org/10.1016/B978-0-323-90452-0.00016-5.

Bybin, V. A., Belogolova, G. A., Markova, Y. A., Sokolova, M. G., Sidorov, A. V., Gordeeva, O. N., & Poletaeva, V. I. (2021). Influence of Heavy Metals and Arsenic on Survival and Biofilm Formation of Some Saprotrophic Soil Microorganisms. Water, Air, & Soil Pollution, 232(8), 343. https://link.gale.com/apps/doc/A672059329/AONE?u=googlescholar&sid=googleScholar&xid=9c6ea7e5

Cacciari, I., Quatrini, P., Zirletta, G., Mincione, E., Vinciguerra, V., Lupattelli, P., & Giovannozzi Sermanni, G. (1993). Isotactic polypropylene biodegradation by a microbial community: physicochemical characterization of metabolites produced. Appl. Environ. Microbiol., 59, 3695–3700. https://doi.org/10.1128/aem.59.11.3695-3700.1993

Center for International Environmental Law (CIEL). (2022.) Sowing a plastic planet: how microplastics in agrochemicals are affecting our soils, our food, and our future. 26 p. https://www.ciel.org/wp-content/uploads/2022/12/Sowing-a-Plastic-Planet_1dec22.pdf

Chen, Y., Wang, X., Wang, X., Cheng, T., Fu, K., Qin, Z., & Feng, K. (2022). Biofilm Structural and Functional Features on Microplastic Surfaces in Greenhouse Agricultural Soil. Sustainability, 14(12), 7024. https://doi.org/10.3390/su14127024

Chen, X., Xie, Y., Wang, J., Shi, Z., Zhang, J., Wei, H., & Ma, Y. (2023). Presence of different microplastics promotes greenhouse gas emissions and alters the microbial community composition of farmland soil. Sci. Total. Environ., 879, 162967. https://doi.org/10.1016/j.scitotenv.2023.162967

Dong, Y., Gao, M., Qiu, W., & Song, Z. (2021). Effect of microplastics and arsenic on nutrients and microorganisms in rice rhizosphere soil. Ecotoxicol. Environ. Saf., 211, 1–12. https://doi.org/10.1016/j.ecoenv.2021.111899

Duis, K., & Coors, A. (2016). Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects. Environ. Sci. Eur., 28, 2. https://doi.org/10.1186/s12302-015-0069-y

Fortuna, M., & Borysovska, O. (2021). Assessment of water pollution by microplastic. Collection of Research Papers of the National Mining University, 65, 195–206. https://doi.org/10.33271/crpnmu/65.195

Ghosh, S., Sinha, J. K., Ghosh, S., Vashisth, K., Han, S., & Bhaskar, R. (2023). Microplastics as an Emerging Threat to the Global Environment and Human Health. Sustainability (Basel), 15, 10821. https://doi.org/10.3390/su151410821

Gao, W., Zhang, Y., Mo, A., Jiang, J., Liang, Y., Cao, X., & He, D. (2022). Removal of microplastics in water: Technology progress and green strategies. Green Anal. Chem., 3, 100042. https://doi.org/10.1016/j.greeac.2022.100042

Guo, J. J., Huang, X. P., Xiang, L., Wang, Y. Z., Li, Y. W., Li, H., Cai, Q. Y., Mo, C. H., & Wong, M. H. (2020). Source, migration and toxicology of microplastics in soil. Environ. Int., 137, 105263. https://doi.org/10.1016/j.envint.2019.105263

Habib, R., Thiemann, T., & Al Kendi, R. (2020). Microplastics and Wastewater Treatment Plants - A Review. Journal of Water Resource and Protection, 12, 1-35. https://doi.org/10.4236/jwarp.2020.121001

Howard, S. A., & McCarthy, R. R. (2023). Modulating biofilm can potentiate activity of novel plastic-degrading enzymes. npj Biofilms Microbiomes, 9, 72. https://doi.org/10.1038/s41522-023-00440-1

Kublik, S., Gschwendtner, S., Magritsch, T., Radl, V., Rillig, M. C., & Schloter, M. (2022). Microplastics in soil induce a new microbial habitat, with consequences for bulk soil microbiomes. Front. Environ. Sci., 10, 989267. https://doi.org/10.3389/fenvs.2022.989267

Langlet, R., Valentin, R., Morard, M., & Raynaud, C. D. (2024). Transitioning to Microplastic-Free Seed Coatings: Challenges and Solutions. Polymers, 16(14), 1969. https://doi.org/10.3390/polym16141969

Lee, J., Jeong, S., & Chae, K.J. (2021). Discharge of microplastics fibres from wet wipes in aquatic and solid environments under different release conditions. Sci. Total. Environ., 784, 147144. https://doi.org/10.1016/j.scitotenv.2021.147144

Li, L., Han, L., Liu, A., & Wang, F. (2022). Imperfect but Hopeful: New Advances in Soil Pollution and Remediation. Int. J. Environ. Res. Public Health, 19, 10164. https://doi.org/10.3390/ijerph191610164

Long, B., Li, F., Wang, K., Huang, Y., Yang, Y., & Xie, D. (2023). Impact of plastic film mulching on microplastic in farmland soils in Guangdong province, China. Heliyon, 9(6), e16587. https://doi.org/10.1016/j.heliyon.2023.e16587

Malakhova, D. V., Egorova, M. A., Leontieva, M. R., Elcheninov, A. G., Panova, T. V., Aleksandrov, Y., & Tsavkelova, E. A. (2023). Anaerobic microbial degradation of polypropylene and polyvinyl chloride samples. Microbiology, 92, 83–93. https://doi.org/10.1134/S0026261722602706

Mani, I. (2020). Biofilm in bioremediation. In V. Ch. Pandey, & V. Singh (Eds.), Bioremediation of Pollutants, Chapter 18, (pp. 375-385). Elsevier. https://doi.org/10.1016/B978-0-12-819025-8.00018-1

Marin, E., & Rusănescu, C. O. (2023). Agricultural Use of Urban Sewage Sludge from the Wastewater Station in the Municipality of Alexandria in Romania. Water, 15(3), 458. https://doi.org/10.3390/w15030458

Moyal, J., Dave, P.H., Wu, M., Karimpour, S., Brar, S.K., Zhong, H., & Kwong, R.W.M. (2023). Impacts of Biofilm Formation on the Physicochemical Properties and Toxicity of Microplastics: A Concise Review. Rev. Environ. Contam. Toxicol. 261(1), 8. https://doi.org/10.1007/s44169-023-00035-z

Nauendorf, A., Krause, S., Bigalke, N. K., Gorb, E. V., Gorb, S. N., Haeckel, M., Wahl, M., & Treude, T. (2016) Microbial colonization and degradation of polyethylene and biodegradable plastic bags in temperate fine-grained organic-rich marine sediments. Mar. Pollut. Bull., 103(1–2), 168–178. https://doi.org/10.1016/j.marpolbul.2015.12.024

Ng, E.e-L., Huerta Lwanga, E., Eldridge, S. M., Johnston, P., Hu, H.-W., Geissen, V., & Chen, D. (2018). An overview of microplastic and nanoplastic pollution in agroecosystems. Science of the Total Environment, 627, 1377–1388. https://doi.org/10.1016/j.scitotenv.2018.01.341

Ó Briain, O., Marques Mendes, A. R., McCarron, S., Healy, M. G., & Morrison, L. (2020). The role of wet wipes and sanitary towels as a source of white microplastic fibres in the marine environment. Water Res., 182, 116021. https://doi.org/10.1016/j.watres.2020.116021

Othman, A. R., Hasan, H. A., Muhamad, M. H., Ismail, N. I., & Abdullah, S. R. S. (2021). Microbial degradation of microplastics by enzymatic processes: a review. Environ. Chem. Lett., 19, 3057-3073. https://doi.org/10.1007/s10311-021-01197-9

Pang, X., Chen, C., Sun, J., Zhan, H., Xiao, Y., Cai, J., Yu, X., Liu, Y., Long, L., & Yang, G. (2023). Effects of complex pollution by microplastics and heavy metals on soil physicochemical properties and microbial communities under alternate wetting and drying conditions. J. Hazard. Mater., 458, 131989. https://doi.org/10.1016/j.jhazmat.2023.131989

Peña, A., Rodríguez-Liébana, J. A., & Delgado-Moreno, L. (2023). Interactions of Microplastics with Pesticides in Soils and Their Ecotoxicological Implications. Agronomy, 13(3), 701. https://doi.org/10.3390/agronomy13030701

Qian, H., Zhang, M., Liu, G., Lu, T., Qu, Q., Du, B., & Pan, X. (2018). Effects of soil residual plastic film on soil microbial community structure and fertility. Water Air Soil Pollut., 229, 1–11. https://doi.org/10.1007/s11270-018-3916-9

Quilliam, R. S., Pow, C. J., Shilla, D. J., Mwesiga, J. J., Shilla, D. A., & Woodford, L. (2023). Microplastics in agriculture – a potential novel mechanism for the delivery of human pathogens onto crops. Front. Plant Sci., 14, 1152419. https://doi.org/10.3389/fpls.2023.1152419

Raffa, C. M., & Chiampo, F. (2021). Bioremediation of Agricultural Soils Polluted with Pesticides: A Review. Bioengineering (Basel), 8(7), 92. https://doi.org/10.3390/bioengineering8070092

Ragoobur, D., Huerta-Lwanga, E., & Somaroo, G. D. (2021). Microplastics in agricultural soils, wastewater effluents and sewage sludge in Mauritius. Sci. Total. Environ., 798, 149326. https://doi.org/10.1016/j.scitotenv.2021.149326

Rajcoomar, S., Amoah, I.D., Abunama, T., Mohlomi, N., Bux, F., & Kumari, S. (2024). Biofilm formation on microplastics in wastewater: insights into factors, diversity and inactivation strategies. Int. J. Environ. Sci. Technol., 21, 4429–4444. https://doi.org/10.1007/s13762-023-05266-0

Ren, X., Tang, J., Liu, X., & Liu, Q. (2020). Effects of microplastics on greenhouse gas emissions and the microbial community in fertilized soil. Environ. Pollut., 256, 1–11. https://doi.org/10.1016/j.envpol.2019.113347

Rusyn, I., Malovanyy, M., Tymchuk, I., & Synelnikov, S. (2021). Effect of mineral fertilizer encapsulated with zeolite and polyethylene terephthalate on the soil microbiota, pH and plant germination. Ecological Questions, 32(1), 1-12. https://doi.org/10.12775/EQ.2021.007

Sa’adu, I., & Farsang, A. (2023). Plastic contamination in agricultural soils: a review. Environ. Sci. Eur., 35, 13. https://doi.org/10.1186/s12302-023-00720-9

Sharmin, S., Wang, Q., Islam, M. R., Wang, W., & Enyoh, C. E. (2024). Microplastic Contamination of Non-Mulched Agricultural Soils in Bangladesh: Detection, Characterization, Source Apportionment and Probabilistic Health Risk Assessment. Journal of Xenobiotics, 14(2), 812-826. https://doi.org/10.3390/jox14020046

Thapliyal, Ch., Priya, A., Singh, S. Bh., Bahuguna, V., & Daverey, A. (2024). Potential strategies for bioremediation of microplastic contaminated soil. Environmental Chemistry and Ecotoxicology, 6, 117-131. https://doi.org/10.1016/j.enceco.2024.05.001

Tkachuk, N., & Zelena, L. (2021). The impact of bacteria of the genus Bacillus upon the biodamage/biodegradation of some metals and extensively used petroleum-based plastics. Corrosion and Materials Degradation, 2(4), 531-553. https://doi.org/10.3390/cmd2040028

Tkachuk, N., & Zelena, L. (2023). Some Microbiological Characteristics of the Biofilm on the Surface of Pre-Production Pellets of Polypropylene Microplastics after Short Exposure in Soil. Engineering Proceedings, 56(1), 13. https://doi.org/10.3390/ASEC2023-15350

Tkachuk, N., & Zelena, L. (2024). Microbiological indicators of the biofilms microparticles of quartz sand and polypropylene after short-term exposure in soil. Biofouling, 1–12. https://doi.org/10.1080/08927014.2024.2406340

Thapliyal, Ch., Priya, A., Singh, S. Bh., Bahuguna, V., & Daverey, A. (2024). Potential strategies for bioremediation of microplastic contaminated soil. Environmental Chemistry and Ecotoxicology, 6, 117-131. https://doi.org/10.1016/j.enceco.2024.05.001

Ullah, R., Tsui, M. T., Chen, H., Chow, A., Williams, C., & Ligaba-Osena, A. (2021). Microplastics interaction with terrestrial plants and their impacts on agriculture. J. Environ. Qual., 50(5), 1024-1041. https://doi.org/10.1002/jeq2.20264

Yurchenko, V. О., Melnikova, О. H., Ponomarov, K. S., & Samokhvalova, А. I. (2021). Microplastics in bottom sediments of rivers in urbanized areas. Ecologically sustainable development of urban systems: challenges and solutions: Proceedings of International scientific and practical internet conference (Kharkiv, 2–3 November, 2021), 134-136. Kharkiv, 2021. http://eprints.kname.edu.ua/60576/1/C%D0%B1%D0%BE%D1%80%D0%BD%D0%B8%D0%BA21-134-136.pdf (in Ukrainian)

Zaborowska, M., Wyszkowska, J., & Borowik, A. (2020). Soil Microbiome Response to Contamination with Bisphenol A, Bisphenol F and Bisphenol S. Int. J. Mol. Sci., 21(10), 3529. https://doi.org/10.3390/ijms21103529

Zettler, E. R., Mincer, T. J., & Amaral-Zettler, L. A. (2013). Life in the “plastisphere”: Microbial communities on plastic marine debris. Environ. Sci. Technol., 47, 7137–7146. https://doi.org/10.1021/es401288x

Zhang, X., Li, Y., Lei, J., Li, Z., Tan, Q., Xie, L., Xiao, Y., Liu, T., Chen, X., Wen, Y., Xiang, W., Kuzyakov, Y., & Yan, W. (2023). Time-dependent effects of microplastics on soil bacteriome. Journal of Hazardous Materials, 447, 130762. https://doi.org/10.1016/j.jhazmat.2023.130762

Downloads

Published

2024-11-26

Issue

Section

Ecology, industrial and environmental safety

How to Cite

Tkachuk, N., Zelena, L., & Novikov, Y. (2024). Microplastics in agricultural soils: sources and microbial remediation approaches. Challenges and Issues of Modern Science, 3, 279–287. https://cims.fti.dp.ua/j/article/view/244

Share