Forthcoming

Laser Micro-Texturing and AI-Driven Optimization for Thermal Management of Photovoltaic Systems

Authors

  • Aswin Karkadakattil Indian Institute of Technology Palakkad image/svg+xml
    • Conceptualization
    • Data curation
    • Investigation
    • Methodology
    • Project administration
    • Software
    • Supervision
    • Resources
    • Validation
    • Visualization
    • Writing – original draft
    • Writing – review & editing
    https://orcid.org/0009-0004-6141-0545

DOI:

https://doi.org/10.15421/cims.4.320

Keywords:

laser micro-texturing, renewable energy devices, photovoltaic cooling, thermal management, artificial intelligence, optimization

Abstract

Purpose. Photovoltaic (PV) and other renewable systems suffer efficiency and reliability losses from overheating. This review emphasizes the need for scalable, integrated thermal management solutions. Design / Method / Approach. The paper evaluates recent advances in laser-based surface micro-texturing as a promising strategy for thermal regulation. Controlled micro/nano-scale structures enhance heat dissipation, expand surface area, and tune wettability. The study also explores the role of artificial intelligence (AI) in predicting, designing, and optimizing laser-induced textures for simultaneous improvements in thermal, optical, and mechanical durability. Findings. Laser-processed surfaces provide multifunctional benefits such as enhanced convective cooling, anti-reflection, and self-cleaning, but most demonstrations remain confined to laboratory scale. AI methods including neural networks, evolutionary algorithms, and reinforcement learning show strong predictive capability and multi-objective optimization potential, offering pathways for industrial adoption. Theoretical Implications. The review establishes links between surface morphology, thermo-fluid dynamics, and optical behavior, and shows how AI-enabled digital twins can extend these relationships into predictive, generalized models. It also highlights opportunities for modelling coupled thermo-optical effects and advancing data-driven surface engineering. Practical Implications. Integrating laser texturing with AI-driven optimization could embed thermal regulation directly into device structures, reducing reliance on external cooling systems and improving field durability. Originality / Value. Unlike prior reviews, this work unites laser surface engineering and AI optimization into a roadmap for renewable energy devices, highlighting digital twins and techno-economic assessment as enablers for scale-up. Research Limitations / Future Research. Challenges include scalability, durability under harsh environments, limited AI training datasets, and insufficient lifecycle analyses, requiring cross-disciplinary collaboration. Article Type. Review Paper.

Downloads

Download data is not yet available.

Author Biography

  • Aswin Karkadakattil, Indian Institute of Technology Palakkad

    Postgraduate researcher at the Department of Mechanical Engineering. Holds a Master of Technology (M.Tech) in Materials and Manufacturing Engineering. Recipient of the Prime Minister’s Scholarship for academic excellence during undergraduate studies. Member of scientific communities in additive manufacturing and aerospace technologies. Research interests: laser-based surface post-processing, artificial neural network (ANN) modeling, additive manufacturing, directed energy systems, and renewable energy systems.

References

Agostinelli, S., Ciulla, G., Salemi, A., & Borchiellini, R. (2021). Cyber-physical systems improving building energy management: Digital twin and artificial intelligence. Energies, 14(8), 2338. https://doi.org/10.3390/en14082338

Alao, K. T., Shittu, A., Zhang, Y., & Chen, L. (2025). Multi-method cooling strategies for photovoltaic systems: A comprehensive review of passive, active, and AI-optimized hybrid techniques. Multiscale and Multidisciplinary Modeling, Experiments and Design, 8(8), 1–42. https://doi.org/10.1007/s41939-025-00941-w

Alqatamin, A., & Su, J. (2025). Numerical analysis and design of photovoltaic-thermal (PVT) system with novel water-cooling channel structure integrated with perforated V-shape fins. Renewable Energy, 243, 122587. https://doi.org/10.1016/j.renene.2025.122587

Al-Shamkhee, D., Ahmed, S., Kadhim, A., & Ali, H. (2022). Passive cooling techniques for ventilation: An updated review. Renewable Energy and Environmental Sustainability, 7, 23. https://doi.org/10.1051/rees/2022011

Al-Ugla, A. A., Bin Mahfouz, A. A., Said, S. A. M., & Al-Sulaiman, F. A. (2016). Techno-economic analysis of solar-assisted air-conditioning systems for commercial buildings in Saudi Arabia. Renewable and Sustainable Energy Reviews, 54, 1301–1310. https://doi.org/10.1016/j.rser.2015.10.047

Andueza, Á., Zubia, J., Arrue, J., & Illarramendi, M. A. (2021). Enhanced thermal performance of photovoltaic panels based on glass surface texturization. Optical Materials, 121, 111511. https://doi.org/10.1016/j.optmat.2021.111511

Ascencio-Vásquez, J., Köntges, M., Morales, D., & Gutiérrez, J. (2019). Global climate data processing and mapping of degradation mechanisms and degradation rates of PV modules. Energies, 12(24), 4749. https://doi.org/10.3390/en12244749

Asfahan, H. M., Ali, M. A., & Khan, A. (2021). Artificial intelligence for the prediction of the thermal performance of evaporative cooling systems. Energies, 14(13), 3946. https://doi.org/10.3390/en14133946

Astrup, T. F., Møller, J., Fruergaard, T., & Christensen, T. H. (2015). Life cycle assessment of thermal waste-to-energy technologies: Review and recommendations. Waste Management, 37, 104–115. https://doi.org/10.1016/j.wasman.2014.06.011

Aswin, K., Kallath, A., Adithyan, P., & Dayal, A. (2025). Comparison of recent trends in cooling of photovoltaic cells to increase its performance. International Journal of Scientific Development and Research, 10(4), e82-e95. https://doi.org/10.56975/ijsdr.v10i4.302395

Attia, S., Bilir, S., Loonen, R., & Hensen, J. (2022). Comparison of thermal energy saving potential and overheating risk of four adaptive façade technologies in office buildings. Sustainability, 14(10), 6106. https://doi.org/10.3390/su14106106

Auld, G., Mallett, A., Burlica, B., Slater, R., & Cashore, B. (2014). Evaluating the effects of policy innovations: Lessons from a systematic review of policies promoting low-carbon technology. Global Environmental Change, 29, 444–458. https://doi.org/10.1016/j.gloenvcha.2014.03.002

Bennear, L. S., & Stavins, R. N. (2007). Second-best theory and the use of multiple policy instruments. Environmental and Resource Economics, 37(1), 111–129. https://doi.org/10.1007/s10640-007-9110-y

Besheer, A. H., Yousef, M. S., & Huzayyin, A. S. (2016). Review on recent approaches for hybrid PV/T solar technology. International Journal of Energy Research, 40(15), 2038–2053. https://doi.org/10.1002/er.3567

Bezaatpour, J., Heidari, A., Mousavi, S., & Rahimi, M. (2025). Strategic mitigation of temperature-induced efficiency losses in large-scale photovoltaic facades. Energy, 137792. https://doi.org/10.1016/j.energy.2025.137792

Bhat, I. K., & Prakash, R. (2009). LCA of renewable energy for electricity generation systems—A review. Renewable and Sustainable Energy Reviews, 13(5), 1067–1073. https://doi.org/10.1016/j.rser.2008.08.004

Bonse, J., Kirner, S. V., & Krüger, J. (2020). Laser-induced periodic surface structures (LIPSS). In Sugioka, K. (Ed.), Handbook of laser micro- and nano-engineering (pp. 1–59). Springer. https://doi.org/10.1007/978-3-319-69537-2_17-1

Busch, P.-O., Jörgens, H., & Tews, K. (2005). The global diffusion of regulatory instruments: The making of a new international environmental regime. The Annals of the American Academy of Political and Social Science, 598(1), 146–167. https://doi.org/10.1177/0002716204272355

Chen, Z., Liu, W., Wu, Q., & Sun, Y. (2022). Picosecond laser treated aluminium surface for photothermal seawater desalination. Desalination, 528, 115561. https://doi.org/10.1016/j.desal.2022.115561

Chen, Z., Wang, L., Yang, S., & Zhang, L. (2022). A short review on functionalized metallic surfaces by ultrafast laser micromachining. The International Journal of Advanced Manufacturing Technology, 119(11), 6919–6948. https://doi.org/10.1007/s00170-021-08560-8

Coblas, D. G., Silva, F. J. G., Campilho, R. D. S. G., & Pereira, M. T. (2015). Manufacturing textured surfaces: State of art and recent developments. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 229(1), 3–29. https://doi.org/10.1177/1350650114542242

Conradi, M., Skocaj, D., Jovanovic, Z., & Drevensek, M. (2019). Short-and long-term wettability evolution and corrosion resistance of uncoated and polymer-coated laser-textured steel surface. Coatings, 9(9), 592. https://doi.org/10.3390/coatings9090592

Feng, S. C., Zhang, Y., Guo, J., & Lin, F. (2023). Functional requirements of software tools for laser-based powder bed fusion additive manufacturing for metals. Journal of Computing and Information Science in Engineering, 23(3), 031005. https://doi.org/10.1115/1.4054933

Figgis, B., & Bermudez, V. (2021). PV coating abrasion by cleaning machines in desert environments—Measurement techniques and test conditions. Solar Energy, 225, 252–258. https://doi.org/10.1016/j.solener.2021.07.039

Fillion, R. M., Riahi, A. R., & Edrisy, A. (2014). A review of icing prevention in photovoltaic devices by surface engineering. Renewable and Sustainable Energy Reviews, 32, 797–809. https://doi.org/10.1016/j.rser.2014.01.015

Ghalandari, M., Ahmadi, M. H., Pourkiaei, S. M., & Chen, L. (2020). Applications of nanofluids containing carbon nanotubes in solar energy systems: A review. Journal of Molecular Liquids, 313, 113476. https://doi.org/10.1016/j.molliq.2020.113476

Graham, D., & Woods, N. (2006). Making corporate self-regulation effective in developing countries. World Development, 34(5), 868–883. https://doi.org/10.1016/j.worlddev.2005.04.022

Grillo, F., Wirth, C., Behnam, M., & Fransen, L. (2024). Standardization: Research trends, current debates, and interdisciplinarity. Academy of Management Annals, 18(2), 788–830. https://doi.org/10.5465/annals.2023.0072

Guo, C., Zhang, M., & Hu, J. (2022). Fabrication of hierarchical structures on titanium alloy surfaces by nanosecond laser for wettability modification. Optics & Laser Technology, 148, 107728. https://doi.org/10.1016/j.optlastec.2021.107728

Gupta, N., & Tiwari, G. N. (2016). Review of passive heating/cooling systems of buildings. Energy Science & Engineering, 4(5), 305–333. https://doi.org/10.1002/ese3.129

Hemeida, M. G., Abdelaziz, E. A., Elsayed, A. H., & Salem, M. A. (2022). Renewable energy resources technologies and life cycle assessment. Energies, 15(24), 9417. https://doi.org/10.3390/en15249417

Hu, M., Chen, J., Zhao, J., & Wang, Y. (2016). Experimental study of the effect of inclination angle on the thermal performance of heat pipe photovoltaic/thermal (PV/T) systems with wickless heat pipe and wire-meshed heat pipe. Applied Thermal Engineering, 106, 651–660. https://doi.org/10.1016/j.applthermaleng.2016.06.003

Huang, Y., & Schmid, S. R. (2018). Additive manufacturing for health: State of the art, gaps and needs, and recommendations. Journal of Manufacturing Science and Engineering, 140(9), 094001. https://doi.org/10.1115/1.4040430

Jakhar, S., Paliwal, M. K., & Kumar, M. (2023). Machine learning predictive models for optimal design of photovoltaic/thermal collector with nanofluids based geothermal cooling. Environmental Progress & Sustainable Energy, 42(5), e14131. https://doi.org/10.1002/ep.14131

Jalil, S. A., Ahmed, M., Ali, M., & Khan, S. (2020). Spectral absorption control of femtosecond laser-treated metals and application in solar-thermal devices. Light: Science & Applications, 9(1), 14. https://doi.org/10.1038/s41377-020-0242-y

Ji, M., Chen, R., Zhang, Y., & Wang, J. (2024). Prediction and optimization kerf width in laser beam machining of titanium alloy using genetic algorithm tuned adaptive neuro-fuzzy inference system. The International Journal of Advanced Manufacturing Technology, 132(11), 5873–5893. https://doi.org/10.1007/s00170-024-13681-x

Jo, H. H., Kim, H. J., Park, J., & Lee, S. (2022). Application and evaluation of phase change materials for improving photovoltaic power generation efficiency and roof overheating reduction. Renewable Energy, 195, 1412–1425. https://doi.org/10.1016/j.renene.2022.06.119

Joe, D. J., Lee, J. H., Lee, K., & Kim, S. (2017). Laser-material interactions for flexible applications. Advanced Materials, 29(26), 1606586. https://doi.org/10.1002/adma.201606586

Joo, H.-J., An, Y.-S., Kim, M.-H., & Kong, M. (2023). Long-term performance evaluation of liquid-based photovoltaic thermal (PVT) modules with overheating-prevention technique. Energy Conversion and Management, 296, 117682. https://doi.org/10.1016/j.enconman.2023.117682

Jordan, D. C., Kurtz, S. R., Wohlgemuth, J., & VanSant, K. (2019). PV degradation – Mounting & temperature. In 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) (pp. 1–6). IEEE. https://doi.org/10.1109/PVSC40753.2019.8980767

Kahoul, N., Houabes, M., & Sadok, M. (2014). Assessing the early degradation of photovoltaic modules performance in the Saharan region. Energy Conversion and Management, 82, 320–326. https://doi.org/10.1016/j.enconman.2014.03.034

Kalinowski, A., Nowak, M., & Wróbel, R. (2023). Laser surface texturing: Characteristics and applications. System Safety: Human-Technical Facility-Environment, 5(1), 240–248. https://doi.org/10.2478/czoto-2023-0026

Kavousi-Fard, A., Ahmadi, M., & Samadi, A. (2024). Digital twin for mitigating solar energy resources challenges: A perspective. Solar Energy, 274, 112561. https://doi.org/10.1016/j.solener.2024.112561

Kempe, M. D., & Wohlgemuth, J. H. (2013). Evaluation of temperature and humidity on PV module component degradation. In 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (pp. 1–6). IEEE. https://doi.org/10.1109/PVSC.2013.6744112

Kenfack, A. Z., Ntep, F. A., Fokam, R. B., & Talla, P. K. (2025). Design of a meta-heuristic artificial intelligence (AI) model for an optimal photovoltaic module cooling system. Discover Applied Sciences, 7(4), 269. https://doi.org/10.1007/s42452-025-06696-w

Khan, S. Y., Ali, M., Farooq, R., & Rehman, A. U. (2025). Revolutionizing solar photovoltaic efficiency: A comprehensive review of cutting-edge thermal management methods for advanced and conventional solar photovoltaic. Energy & Environmental Science. https://doi.org/10.1039/d4ee03525a

Kim, J. E., & Tang, T. (2020). Preventing early lock-in with technology-specific policy designs: The Renewable Portfolio Standards and diversity in renewable energy technologies. Renewable and Sustainable Energy Reviews, 123, 109738. https://doi.org/10.1016/j.rser.2020.109738

Lämmle, M. (2019). Thermal management of PVT collectors: Development and modelling of highly efficient glazed, flat plate PVT collectors with low-emissivity coatings and overheating protection (Doctoral dissertation, Fraunhofer-Institut für Solare Energiesysteme ISE, Stuttgart). Fraunhofer Verlag. https://doi.org/10.24406/publica-fhg-282606

Li, S., Zhang, X., Huang, J., & Zhou, T. (2021). A method for accurately assessing field performance degradation of PV modules in different geographical regions. Sustainable Energy Technologies and Assessments, 48, 101638. https://doi.org/10.1016/j.seta.2021.101638

Liang, Z., Wang, C., Li, J., & Zhao, H. (2023). Aluminum-based heterogeneous surface for efficient solar desalination and fog harvesting processed by a picosecond laser. ACS Applied Materials & Interfaces, 15(39), 46195–46204. https://doi.org/10.1021/acsami.3c08121

Liu, Z., Zhao, Y., Chen, H., & Wang, H. (2022). Metal surface wettability modification by nanosecond laser surface texturing: A review. Biosurface and Biotribology, 8(2), 95–120. https://doi.org/10.1049/bsb2.12039

Magalhães, P. M. L. P., Martins, J. F. A., & Joyce, A. L. M. (2016). Comparative analysis of overheating prevention and stagnation handling measures for photovoltaic-thermal (PV-T) systems. Energy Procedia, 91, 346–355. https://doi.org/10.1016/j.egypro.2016.06.282

Mahian, O., Kianifar, A., Kalogirou, S. A., Pop, I., & Wongwises, S. (2013). A review of the applications of nanofluids in solar energy. International Journal of Heat and Mass Transfer, 57(2), 582–594. https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.037

Mallikarjuna, K., Reddy, V., Kumar, M., & Rao, P. (2021). A nanofluids and nanocoatings used for solar energy harvesting and heat transfer applications: A retrospective review analysis. Materials Today: Proceedings, 37, 823–834. https://doi.org/10.1016/j.matpr.2020.05.833

Mani, M., Lyons, K. W., & Gupta, S. K. (2014). Sustainability characterization for additive manufacturing. Journal of Research of the National Institute of Standards and Technology, 119, 419. https://doi.org/10.6028/jres.119.016

Mebarek-Oudina, F., & Chabani, I. (2022). Review on nano-fluids applications and heat transfer enhancement techniques in different enclosures. Journal of Nanofluids, 11(2), 155–168. https://doi.org/10.1166/jon.2022.1834

Napp, T. A., Gambhir, A., Hills, T. P., Florin, N., & Fennell, P. S. (2014). A review of the technologies, economics and policy instruments for decarbonising energy-intensive manufacturing industries. Renewable and Sustainable Energy Reviews, 30, 616–640. https://doi.org/10.1016/j.rser.2013.10.036

Nižetić, S., Grubišić-Čabo, F., Marinić-Kragić, I., & Čoko, D. (2021). A novel and effective passive cooling strategy for photovoltaic panel. Renewable and Sustainable Energy Reviews, 145, 111164. https://doi.org/10.1016/j.rser.2021.111164

Nižetić, S., Papadopoulos, A. M., & Giama, E. (2017). Comprehensive analysis and general economic-environmental evaluation of cooling techniques for photovoltaic panels, Part I: Passive cooling techniques. Energy Conversion and Management, 149, 334–354. https://doi.org/10.1016/j.enconman.2017.07.022

Obilor, A. F., et al. (2022). Micro-texturing of polymer surfaces using lasers: A review. The International Journal of Advanced Manufacturing Technology, 120(1), 103–135. https://doi.org/10.1007/s00170-022-08731-1

Omazic, A., Parikh, H., Deline, C., MacAlpine, S., & Alonso-Álvarez, D. (2019). Relation between degradation of polymeric components in crystalline silicon PV module and climatic conditions: A literature review. Solar Energy Materials and Solar Cells, 192, 123–133. https://doi.org/10.1016/j.solmat.2018.12.027

Pandian, A., Kumar, R., Kumar, S., & Gupta, P. (2016). Fire hazards and overheating caused by shading faults on photovoltaic solar panel. Fire Technology, 52(2), 349–364. https://doi.org/10.1007/s10694-015-0509-7

Perera, A. T. D., Attalage, R. A., Perera, K. K. C. K., & Sonnadara, D. U. J. (2019). Machine learning methods to assist energy system optimization. Applied Energy, 243, 191–205. https://doi.org/10.1016/j.apenergy.2019.03.202

Pfleging, W. (2020). Recent progress in laser texturing of battery materials: A review of tuning electrochemical performances, related material development, and prospects for large-scale manufacturing. International Journal of Extreme Manufacturing, 3(1), 012002. https://doi.org/10.1088/2631-7990/abca84

Qi, L., Zhang, H., Liu, Y., & Huang, W. (2021). Techno-economic assessment of photovoltaic power generation mounted on cooling towers. Energy Conversion and Management, 235, 113907. https://doi.org/10.1016/j.enconman.2021.113907

Rahmani, R., Momeni, M., Javidan, M., & Karimi, N. (2023). Overview of selective laser melting for Industry 5.0: Toward customizable, sustainable, and human-centric technologies. Machines, 11(5), 522. https://doi.org/10.3390/machines11050522

Rico Sierra, D., Edwardson, S. P., & Dearden, G. (2018). Laser surface texturing of titanium with thermal post-processing for improved wettability properties. Procedia CIRP, 74, 362–366. https://doi.org/10.1016/j.procir.2018.08.143

Rubahn, H.-G. (1999). Laser applications in surface science and technology. John Wiley & Sons. https://www.wiley.com/en-us/Laser+Applications+in+Surface+Science+and+Technology-p-9780471984504

Seid Ahmed, Y. (2024). Optimizing femtosecond texturing process parameters through advanced machine learning models in tribological applications. Lubricants, 12(12), 454. https://doi.org/10.3390/lubricants12120454

Shanmugam, N., Babu, M. R., Mohan, S., & Kumar, R. (2020). Anti-reflective coating materials: A holistic review from PV perspective. Energies, 13(10), 2631. https://doi.org/10.3390/en13102631

Sharaf, M., Yousef, M. S., & Huzayyin, A. S. (2022). Review of cooling techniques used to enhance the efficiency of photovoltaic power systems. Environmental Science and Pollution Research, 29(18), 26131–26159. https://doi.org/10.1007/s11356-022-18719-9

Sharma, P., Kumar, R., Singh, A., & Gupta, S. (2022). Recent advances in machine learning research for nanofluid-based heat transfer in renewable energy system. Energy & Fuels, 36(13), 6626–6658. https://doi.org/10.1021/acs.energyfuels.2c01006

Singh, S. C., & Guo, C. (2022). Femtosecond laser‐produced optical absorbers for solar‐thermal energy harvesting. EcoMat, 4(1), e12161. https://doi.org/10.1002/eom2.12161

Sohrabpoor, H., Mianehrow, H., Khodaygan, S., & Eslami, A. (2019). Improving precision in the prediction of laser texturing and surface interference of 316L assessed by neural network and adaptive neuro-fuzzy inference models. The International Journal of Advanced Manufacturing Technology, 104(9), 4571–4580. https://doi.org/10.1007/s00170-019-04291-z

Sugioka, K., & Cheng, Y. (2014). Femtosecond laser three-dimensional micro- and nanofabrication. Applied Physics Reviews, 1(4), 041303. https://doi.org/10.1063/1.4904320

Suwa, T. (2022). Transient heat transfer performance prediction using a machine learning approach for sensible heat storage in parabolic trough solar thermal power generation cycles. Journal of Energy Storage, 56, 105965. https://doi.org/10.1016/j.est.2022.105965

Toyserkani, E., & Rasti, N. (2015). Ultrashort pulsed laser surface texturing. In Laser surface engineering (pp. 441–453). Woodhead Publishing. https://doi.org/10.1016/B978-1-78242-074-3.00018-0

Van de Kaa, G., & Greeven, M. (2017). LED standardization in China and South East Asia: Stakeholders, infrastructure and institutional regimes. Renewable and Sustainable Energy Reviews, 72, 863–870. https://doi.org/10.1016/j.rser.2017.01.101

Vorobyev, A. Y., & Guo, C. (2013). Direct femtosecond laser surface nano/microstructuring and its applications. Laser & Photonics Reviews, 7(3), 385–407. https://doi.org/10.1002/lpor.201200017

Wang, Q., & Wang, H. (2022). Fabrication of textured surface with controllable wettability via laser-thermal hybrid processing. Materials Letters, 315, 131954. https://doi.org/10.1016/j.matlet.2022.131954

Wang, X., Li, Y., Chen, Q., & Zhang, J. (2019). Fabrication of micro/nano-hierarchical structures for droplet manipulation via velocity-controlled picosecond laser surface texturing. Optics and Lasers in Engineering, 122, 319–327. https://doi.org/10.1016/j.optlaseng.2019.06.021

Xu, H., Zhao, Y., Liu, J., & Zhang, W. (2021). Energy conversion performance of a PV/T-PCM system under different thermal regulation strategies. Energy Conversion and Management, 229, 113660. https://doi.org/10.1016/j.enconman.2020.113660

Xu, J., & Gong, J. (2023). Novel sustainable urban management framework based on solar energy and digital twin. Solar Energy, 262, 111861. https://doi.org/10.1016/j.solener.2023.111861

Xu, W., Bai, Y., & Yin, Y. (2018). Surface engineering of nanostructured energy materials. Advanced Materials, 30(48), 1802091. https://doi.org/10.1002/adma.201802091

Ye, J. Y., Tay, A., Hsiao, A., & Hameiri, Z. (2014). Performance degradation of various PV module technologies in tropical Singapore. IEEE Journal of Photovoltaics, 4(5), 1288–1294. https://doi.org/10.1109/JPHOTOV.2014.2338051

Yilbas, B. S., Arif, A. F. M., Ahmed, S. H., & Al-Qahtani, H. (2018). Laser texturing of Inconel 718 alloy surface: Influence of environmental dust in humid air ambient. Optics & Laser Technology, 108, 346–354. https://doi.org/10.1016/j.optlastec.2018.07.017

Yuan, W., Li, H., Zhou, Y., & Liu, Z. (2018). Comparison study of the performance of two kinds of photovoltaic/thermal (PV/T) systems and a PV module at high ambient temperature. Energy, 148, 1153–1161. https://doi.org/10.1016/j.energy.2018.01.121

Zayed, M. E., Aboelmaaref, M. M., & Chazy, M. (2023). Design of solar air conditioning system integrated with photovoltaic panels and thermoelectric coolers: Experimental analysis and machine learning modeling by random vector functional link coupled with white whale optimization. Thermal Science and Engineering Progress, 44, 102051. https://doi.org/10.1016/j.tsep.2023.102051

Zhao, B., Li, C., Wu, X., & Yang, X. (2020). Spectrally selective approaches for passive cooling of solar cells: A review. Applied Energy, 262, 114548. https://doi.org/10.1016/j.apenergy.2020.114548

Downloads

Published

2025-09-29

How to Cite

Karkadakattil, A. (2025). Laser Micro-Texturing and AI-Driven Optimization for Thermal Management of Photovoltaic Systems. Challenges and Issues of Modern Science, 4(2), 320. https://doi.org/10.15421/cims.4.320

Share

Plaudit