Application of deep learning to improve the performance of collision recognition algorithms in 3D space
Keywords:
automotive accidents, machine learning, SUMO traffic simulator, anomaly detection, traffic management, road safety, automated accident detection, transportation network efficiencyAbstract
The prevention and detection of automotive accidents have been the focus of numerous studies, with many aiming to identify potential accident-causing objects or analyzing accident statistics. This research introduces a system designed to detect random accidents by collecting data from nearby vehicles and processing it using machine learning tools to identify potential accidents. The objective is to analyze road behavior and identify vehicles deviating from normal norms. The study utilizes the SUMO (Simulation of Urban Mobility) traffic simulator to simulate vehicle movement and gather information on their positions and sleep patterns. A total of 100 vehicles were simulated on a 3000-meter road segment using SUMO, with various vehicle types to mimic real-world traffic. The system utilizes the DBSCAN unsupervised clustering algorithm to detect anomalies, showing its effectiveness in identifying accidents. Results demonstrate that anomalies increase after an accident, indicating blocked roads or significant traffic increase in alternative lanes. Automated accident detection is crucial for traffic management systems, aiding in the avoidance of future incidents and enabling authorities to reopen roads promptly. This study highlights the potential of analyzing traffic behavior through vehicle positions and speeds, with abnormal activities serving as potential threats to nearby drivers. The findings underscore the importance of incorporating machine learning techniques into traffic management systems to enhance road safety and efficiency. In conclusion, this research demonstrates the feasibility and efficacy of utilizing machine learning algorithms for automated accident detection in traffic management systems. By leveraging advanced technologies, such as simulation and clustering analysis, road safety can be significantly improved, ultimately leading to safer and more efficient transportation networks.
Downloads
References
Емерсон. (б.р.). Бездротові автомобільні мережі, що самоорганізуються. Отримано з https://www.emerson.com/documents/automation/training-self-organizing-networks-en-41150.pdf
Вінтерсбергер, П., Дей, Д., & Лекен, А. (б.р.). Існуючі методи та дослідження взаємодії між автоматичними транспортними засобами. Отримано з https://www.frontiersin.org/research-topics/20015/interaction-between-automated-vehicles-and-other-road-users/magazine
Li, Y. (2012). Використання DSRC/WAVE стандарту для безпечної навігації. У X. Zhang та D. Qiao (Ред.), Quality, Reliability, Security and Robustness in Heterogeneous Networks. QShine 2010. Лекційні записи Інституту інформатики, соціальної інформатики та телекомунікаційної інженерії, том 74. Springer. https://doi.org/10.1007/978-3-642-29222-4_38
Borcoci, E. (2020). Використання клітинних мереж 2G/3G/4G/5G для забезпечення обміну повідомленнями між транспортними засобами. Отримано з https://www.iaria.org/conferences2020/filesICN20/EugenBorcoci_Tutorial_NexComm_2020.pdf
Alvarez Lopez, P., Behrisch, M., Bieker-Walz, L., Erdmann, J., Flötteröd, Y.-P., Hilbrich, R., Lücken, L., Rummel, J., Wagner, P., & Wießner, E. (2018). Симулятор транспортного потоку SUMO (Simulation of Urban Mobility). У 2019 IEEE Intelligent Transportation Systems Conference (ITSC) (с. 2575-2582). https://doi.org/10.1109/ITSC.2018.8569938
Scikit-learn developers. (б.р.). Алгоритм кластеризації без нагляду DBSCAN. Отримано з https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). Інструмент машинного навчання WEKA: Оновлення. ACM SIGKDD Explorations Newsletter, 11(1), 10-18. https://doi.org/10.1145/1656274.1656278
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Іван Невкритий, Світлана Антоненко (Автор)
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in the journal Challenges and Issues of Modern Science are licensed under the Creative Commons Attribution 4.0 International (CC BY) license. This means that you are free to:
- Share, copy, and redistribute the article in any medium or format
- Adapt, remix, transform, and build upon the article
as long as you provide appropriate credit to the original work, include the authors' names, article title, journal name, and indicate that the work is licensed under CC BY. Any use of the material should not imply endorsement by the authors or the journal.