Methodology of satellite monitoring of deforestation based on Sentinel-2A/B data
Keywords:
satellite monitoring, Sentinel-2A/B, multispectral imagery, deforestation detection, automated image processing, normalized indices, change index (NDI)Abstract
Purpose. The main goal of the research was development and testing of the methodology of automated processing and analysis of multispectral satellite images of medium spatial resolution for the detection of deforestation. Design / Method / Approach. Experimental testing of the proposed methodology was carried out in the south-west of Ivano-Frankivsk and the south-east of Zakarpattia Oblasts using free archival images of the visible and IR ranges from Sentinel-2A/B satellites. Findings. The results obtained during the conducted research confirmed the possibility and high efficiency of using images from Sentinel-2A/B satellites to detect and assess the dynamics of felling of wild and protected forests. In only one test area, the area of identified fellings in 2 years amounted to more than 300 hectares. Theoretical Implications. The paper shows the advantages of using the normalized difference index of time changes NDI for a given pair of satellite images of different times and selected spectral channels. Thanks to NDI, the accuracy and stability of the results of the detection of temporal changes increases, as well as the influence of such factors as differences in the illumination of different time images, the presence of scattered clouds, aerosol haze, absorption of radiation by the atmosphere, etc., is reduced. Practical Implications. Due to the high degree of automation, the developed technique can be implemented as a software in the form of a geo-informational web service that can function in the interests of a wide range of public services. Originality / Value. During the study, the necessary stages and sequence of processing remote sensing data were determined, and methods, algorithms and software tools for processing images were selected, and proprietary algorithms and programs were developed to increase the degree of automation and efficiency of image processing, as well as to improve the user interface. Research Limitations / Future Research. This study was limited to the use of multispectral imagery from the Sentinel-2A/B satellites (MSI imager). Future studies involve the use of additional data from Landsat-7 (ETM+ imager), Landsat-8 (OLI imager), Landsat-9 (OLI-2 imager) and Terra (ASTER imager). Paper Type. Applied research, methodological article.
Downloads
References
Bilousov, K. H., Nechyporuk, М. V., Khoroshylov, V. S., Svynarenko, D. M., Mozgovoy, D. K., & Popel, V. M. (2022). Method of automated correction of instrument distortions on Landsat-7 multispectral satellite images. Kosmìčna Nauka ì Tehnologìâ, 28(3), 17–28. https://doi.org/10.15407/knit2022.03.017
Bullock, E. L., Woodcock, C. E., & Olofsson, P. (2020). Monitoring tropical forest degradation using spectral unmixing and Landsat time series analysis. Remote Sensing of Environment, 238, 110968. https://doi.org/10.1016/j.rse.2018.11.011
Claverie, M., Ju, J., Masek, J. G., Dungan, J. L., Vermote, E. F., Roger, J.-C., Skakun, S. V., & Justice, C. (2018). The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sensing of Environment, 219, 145–161. https://doi.org/10.1016/j.rse.2018.09.002
Cohen, W., Healey, S., Yang, Z., Stehman, S., Brewer, C., Brooks, E., Gorelick, N., Huang, C., Hughes, M., Kennedy, R., Loveland, T., Moisen, G., Schroeder, T., Vogelmann, J., Woodcock, C., Yang, L., & Zhu, Z. (2017). How Similar Are Forest Disturbance Maps Derived from Different Landsat Time Series Algorithms? Forests, 8(4), 98. https://doi.org/10.3390/f8040098
Copernicus. (2024). A European wide-swath, high-resolution, multi-spectral imaging mission Sentinel-2. Copernicus. https://dataspace.copernicus.eu/explore-data/data-collections/sentinel-data/sentinel-2
Dolinets, J., & Mozgovoy, D. (2009). Training of specialists in the field of Earth remote sensing. Acta Astronautica, 64(1), 75–80. https://doi.org/10.1016/j.actaastro.2008.06.006
Eoportal. (2024). Satellite Missions catalogue. Eoportal.org. https://directory.eoportal.org/web/eoportal/satellite-missions
EOS DA. (2024). EOSDA’s Satellite Intel Reveals The Scale Of Saamaka’s Newest Forest Crisis. EOS Data Analytics. https://eos.com/blog/decades-long-story-of-saamaka-the-forest-defenders/
ESA. (2024). Sentinel-2 Colour vision for Copernicus. ESA. https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-2
Flood, N. (2017). Comparing Sentinel-2A and Landsat 7 and 8 Using Surface Reflectance over Australia. Remote Sensing, 9(7), 659. https://doi.org/10.3390/rs9070659
Foga, S., Scaramuzza, P. L., Guo, S., Zhu, Z., Dilley, R. D., Beckmann, T., Schmidt, G. L., Dwyer, J. L., Joseph Hughes, M., & Laue, B. (2017). Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sensing of Environment, 194, 379–390. https://doi.org/10.1016/j.rse.2017.03.026
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031
Hnatushenko, V. V., Hnatushenko, V., Mozgovoy, D. K., & Vasiliev, V. V. (2016). Satellite technology of the forest fires effects monitoring. Науковий вісник Національного гірничого університету, (1), 70-76. http://nbuv.gov.ua/UJRN/Nvngu_2016_1_13
Hnatushenko, V. V., Mozgovyi, D. K., Vasyliev, V. V., & Kavats, О. О. (2017). Satellite monitoring of consequences of illegal extraction of amber in Ukraine. Науковий вісник Національного гірничого університету, (2), 99-105. http://nbuv.gov.ua/UJRN/Nvngu_2017_2_17
Hnatushenko, V. V., Mozhovyi, D. K., & Vasyliev, V. V. (2017). Satellite monitoring of deforestation as a result of mining. Науковий вісник Національного гірничого університету, (5), 94-99. http://nbuv.gov.ua/UJRN/Nvngu_2017_5_16
Makarov, A. L., Belousov, K. G., Svinarenko, D. N., Khoroshylov, V. S., Mozgovoy, D. K., & Popel, V. M. (2021). Automatized recognition of urban vegetation and water bodies by Jilin-1А satellite images. Kosmìčna Nauka ì Tehnologìâ, 27(4), 42–53. https://doi.org/10.15407/knit2021.04.042
Mozgoviy, D. K., Parshyna, O. I., Voloshyn, V. I., & Bushuyev, Y. I. (2007). Remote Sensing and GIS Application for Environmental Monitoring and Accidents Control in Ukraine. In Geographic Uncertainty in Environmental Security (pp. 259-270). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-1-4020-6438-8_16
Mozgovoy, D. K., Svinarenko, D. N., Leong, Y. R., Zhigalov, K. Y., Tsarev, R. Y., Yamskikh, T. N., & Bystrova, N. V. (2019). Automated detection of deforestation based on multi-spectrum satellite data. Journal of Physics: Conference Series, 1399(4), 044101. https://doi.org/10.1088/1742-6596/1399/4/044101
Mozgovoy, D., & Hnatushenko, V. (2019, September). Information technology of satellite image processing for monitoring of floods and drought. In Conference on Computer Science and Information Technologies (pp. 473-487). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-33695-0_32
Mozgovoy, D., Tsarev, R., Korchynskyi, V., Tynchenko, V., Dyachuk, P., Danichev, A., Knyazkov, A., Kapustina, S., & Bakwa, D. D. (2021, April). Processing of Radar and Optical Images for Monitoring Natural and Anthropogenic Emergencies. In Computer Science On-line Conference (pp. 607-620). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-77448-6_60
Myroniuk, V., Bell, D. M., Gregory, M. J., Vasylyshyn, R., & Bilous, A. (2022). Uncovering forest dynamics using historical forest inventory data and Landsat time series. Forest Ecology and Management, 513, 120184. https://doi.org/10.1016/j.foreco.2022.120184
Vanegas-Cubillos, M., Sylvester, J., Villarino, E., Pérez-Marulanda, L., Ganzenmüller, R., Löhr, K., Bonatti, M., & Castro-Nunez, A. (2022). Forest cover changes and public policy: A literature review for post-conflict Colombia. Land Use Policy, 114, 105981. https://doi.org/10.1016/j.landusepol.2022.105981
Vermote, E., Justice, C., Claverie, M., & Franch, B. (2016). Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sensing of Environment, 185, 46–56. https://doi.org/10.1016/j.rse.2016.04.008
Vogelmann, J. E., Gallant, A. L., Shi, H., & Zhu, Z. (2016). Perspectives on monitoring gradual change across the continuity of Landsat sensors using time-series data. Remote Sensing of Environment, 185, 258–270. https://doi.org/10.1016/j.rse.2016.02.060
Wulder, M. A., Loveland, T. R., Roy, D. P., Crawford, C. J., Masek, J. G., Woodcock, C. E., Allen, R. G., Anderson, M. C., Belward, A. S., Cohen, W. B., Dwyer, J., Erb, A., Gao, F., Griffiths, P., Helder, D., Hermosilla, T., Hipple, J. D., Hostert, P., Hughes, M. J., … Zhu, Z. (2019). Current status of Landsat program, science, and applications. Remote Sensing of Environment, 225, 127–147. https://doi.org/10.1016/j.rse.2019.02.015
Ye, S., Rogan, J., Zhu, Z., & Eastman, J. R. (2021). A near-real-time approach for monitoring forest disturbance using Landsat time series: stochastic continuous change detection. Remote Sensing of Environment, 252, 112167. https://doi.org/10.1016/j.rse.2020.112167
Zhu, Z. (2017). Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications. ISPRS Journal of Photogrammetry and Remote Sensing, 130, 370–384. https://doi.org/10.1016/j.isprsjprs.2017.06.013
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Dmytro Mozghovyi, Volodymyr Korchynskyi, Dmytro Svynarenko (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in the journal Challenges and Issues of Modern Science are licensed under the Creative Commons Attribution 4.0 International (CC BY) license. This means that you are free to:
- Share, copy, and redistribute the article in any medium or format
- Adapt, remix, transform, and build upon the article
as long as you provide appropriate credit to the original work, include the authors' names, article title, journal name, and indicate that the work is licensed under CC BY. Any use of the material should not imply endorsement by the authors or the journal.