Physics-Informed Neural Networks in Aerospace: A Structured Taxonomy with Literature Review
Keywords:
Physics-Informed Neural Networks (PINNs), aerospace engineering, machine learning, mathematical simulation, flight vehicles, aerospace designAbstract
Purpose. This study aims to develop a structured four-tier taxonomy that systematically organizes aerospace engineering tasks suitable for the application of Physics-Informed Neural Networks (PINNs), while validating this classification through a literature review and identifying opportunities for future research. Design / Method / Approach. The methodology involves grouping tasks into four distinct tiers—Physical Modeling, Dynamic Analysis, Functional Assessment, and System-Level Assessment—based on their physical, operational, and systemic characteristics. This framework is subsequently populated with real-world examples derived from the analysis of 145 peer-reviewed studies. Findings. The reviewed literature confirms a balanced distribution of PINNs applications across all tiers. Contrary to initial assumptions, studies were identified even in areas previously presumed underrepresented, such as acoustic modeling, optical simulations, and environmental impact assessment. This outcome reveals the broader applicability of PINNs and calls for a reassessment of current assumptions regarding underexplored domains. Theoretical Implications. The proposed taxonomy offers a coherent framework for structuring interdisciplinary PINNs applications by integrating physics-based modeling with machine learning across aerospace engineering contexts. Practical Implications. It provides engineers and researchers with a practical roadmap for selecting PINNs methods tailored to specific problem types, potentially improving computational efficiency and enhancing predictive accuracy in aerospace design and analysis. Originality / Value. The study’s originality lies in its empirically validated, four-tier taxonomy that synthesizes the fragmented body of literature on PINNs in aerospace, offering a unified perspective for researchers and practitioners. Research Limitations / Future Research. While the taxonomy covers a wide range of existing applications, future studies should consider extending it with new tiers—particularly related to manufacturing-aware modeling—and pursue methodological standardization to ensure reproducibility and scalability. Article Type. Review.
Downloads
References
Abdulkadirov, R., Lyakhov, P., Butusov, D., Nagornov, N., & Kalita, D. (2025). Physics-Aware Machine Learning Approach for High-Precision Quadcopter Dynamics Modeling. Drones, 9(3), 187. https://doi.org/10.3390/drones9030187
Almajid, M. M., & Abu-Al-Saud, M. O. (2022). Prediction of porous media fluid flow using physics informed neural networks. Journal of Petroleum Science and Engineering, 208, 109205. https://doi.org/10.1016/j.petrol.2021.109205
Ang, E., & Ng, B. F. (2022). Physics-informed neural networks for flow around airfoil. In AIAA Scitech 2022 Forum (p. 0187). https://doi.org/10.2514/6.2022-0187
Antonelo, E. A., Camponogara, E., Seman, L. O., Jordanou, J. P., de Souza, E. R., & Hübner, J. F. (2024). Physics-informed neural nets for control of dynamical systems. Neurocomputing, 579, 127419. https://doi.org/10.1016/j.neucom.2024.127419
Arzani, A., Cassel, K. W., & D’Souza, R. M. (2023). Theory-guided physics-informed neural networks for boundary layer problems with singular perturbation. Journal of Computational Physics, 473, 111768. https://doi.org/10.1016/j.jcp.2022.111768
Aygun, A., & Karakus, A. (2022). Physics informed neural networks for two dimensional incompressible thermal convection problems. Isı Bilimi ve Tekniği Dergisi, 42(2), 221-232. https://doi.org/10.47480/isibted.1194992
Aygun, A., Maulik, R., & Karakus, A. (2023). Physics-informed neural networks for mesh deformation with exact boundary enforcement. Engineering Applications of Artificial Intelligence, 125, 106660. https://doi.org/10.1016/j.engappai.2023.106660
Baldan, M., Di Barba, P., & Lowther, D. A. (2023). Physics-Informed Neural Networks for Inverse Electromagnetic Problems. IEEE Transactions on Magnetics, 59(5), 1–5. https://doi.org/10.1109/tmag.2023.3247023
Bararnia, H., & Esmaeilpour, M. (2022). On the application of physics informed neural networks (PINN) to solve boundary layer thermal-fluid problems. International Communications in Heat and Mass Transfer, 132, 105890. https://doi.org/10.1016/j.icheatmasstransfer.2022.105890
Barmada, S., Barba, P. D., Formisano, A., Mognaschi, M. E., & Tucci, M. (2024). Physics-informed Neural Networks for the Resolution of Analysis Problems in Electromagnetics. The Applied Computational Electromagnetics Society Journal (ACES), 841–848. https://doi.org/10.13052/2023.aces.j.381102
Bastek, J.-H., & Kochmann, D. M. (2023). Physics-Informed Neural Networks for shell structures. European Journal of Mechanics - A/Solids, 97, 104849. https://doi.org/10.1016/j.euromechsol.2022.104849
Beitalmal, A. O. (2025). A Hybrid Physics-Informed Neural Network (PINN) And Finite Element Method (FEM) Framework for Multiscale Fluid-Structure Interaction Problems. RA Journal of Applied Research, 11(04). https://doi.org/10.47191/rajar/v11i4.11
Bianchi, D., Epicoco, N., Di Ferdinando, M., Di Gennaro, S., & Pepe, P. (2024). Physics-Informed Neural Networks for Unmanned Aerial Vehicle System Estimation. Drones, 8(12), 716. https://doi.org/10.3390/drones8120716
Bobzin, K., Heinemann, H., & Dokhanchi, A. (2025). Physics-Informed Neural Networks for Predicting Particle Properties in Plasma Spraying. Journal of Thermal Spray Technology, 34(2–3), 885–892. https://doi.org/10.1007/s11666-025-01965-x
Borate, P., Rivière, J., Marone, C., Mali, A., Kifer, D., & Shokouhi, P. (2023). Using a physics-informed neural network and fault zone acoustic monitoring to predict lab earthquakes. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-39377-6
Bowman, B., Oian, C., Kurz, J., Khan, T., Gil, E., & Gamez, N. (2023). Physics-Informed Neural Networks for the Heat Equation with Source Term under Various Boundary Conditions. Algorithms, 16(9), 428. https://doi.org/10.3390/a16090428
Brumand-Poor, F., Barlog, F., Plückhahn, N., Thebelt, M., Bauer, N., & Schmitz, K. (2024). Physics-Informed Neural Networks for the Reynolds Equation with Transient Cavitation Modeling. Lubricants, 12(11), 365. https://doi.org/10.3390/lubricants12110365
Cai, S., Wang, Z., Wang, S., Perdikaris, P., & Karniadakis, G. E. (2021). Physics-Informed Neural Networks for Heat Transfer Problems. Journal of Heat Transfer, 143(6). https://doi.org/10.1115/1.4050542
Cao, W., Song, J., & Zhang, W. (2024). A solver for subsonic flow around airfoils based on physics-informed neural networks and mesh transformation. Physics of Fluids, 36(2). https://doi.org/10.1063/5.0188665
Chatterjee, T., Friswell, M. I., Adhikari, S., & Khodaparast, H. H. (2024). MATLAB Implementation of Physics Informed Deep Neural Networks for Forward and Inverse Structural Vibration Problems. Aerospace Research Communications, 2. https://doi.org/10.3389/arc.2024.13194
Chen, D., Li, Y., Liu, K., & Li, Y. (2023). A physics-informed neural network approach to fatigue life prediction using small quantity of samples. International Journal of Fatigue, 166, 107270. https://doi.org/10.1016/j.ijfatigue.2022.107270
Chen, L., Li, B., Luo, C., & Lei, X. (2024). WaveNets: physics-informed neural networks for full-field recovery of rotational flow beneath large-amplitude periodic water waves. Engineering with Computers, 40(5), 2819–2839. https://doi.org/10.1007/s00366-024-01944-w
Chen, Y., & Dal Negro, L. (2022). Physics-informed neural networks for imaging and parameter retrieval of photonic nanostructures from near-field data. APL Photonics, 7(1). https://doi.org/10.1063/5.0072969
Chen, Y., Wang, C., Hui, Y., Shah, N. V., & Spivack, M. (2024). Surface Profile Recovery from Electromagnetic Fields with Physics-Informed Neural Networks. Remote Sensing, 16(22), 4124. https://doi.org/10.3390/rs16224124
Chen, Z., Dai, Y., & Liu, Y. (2024). Crack propagation simulation and overload fatigue life prediction via enhanced physics-informed neural networks. International Journal of Fatigue, 186, 108382. https://doi.org/10.1016/j.ijfatigue.2024.108382
Chen, Z., Gao, J., Wang, W., & Yan, Z. (2021). Physics-informed generative neural network: an application to troposphere temperature prediction. Environmental Research Letters, 16(6), 065003. https://doi.org/10.1088/1748-9326/abfde9
Chifu, V. R., Cioara, T., Pop, C. B., Anghel, I., & Pelle, A. (2024). Physics-Informed Neural Networks for Heat Pump Load Prediction. Energies, 18(1), 8. https://doi.org/10.3390/en18010008
Choi, T., & Lee, D. (2023). Physics-Informed, Data-Driven Model for Atmospheric Corrosion of Carbon Steel Using Bayesian Network. Materials, 16(15), 5326. https://doi.org/10.3390/ma16155326
Chuprov, I., Derkach, D., Efremenko, D., & Kychkin, A. (2025). Application of Physics-Informed Neural Networks for Solving the Inverse Advection-Diffusion Problem to Localize Pollution Sources. arXiv preprint arXiv:2503.18849. https://doi.org/10.48550/arXiv.2503.18849
D’Ambrosio, A., & Furfaro, R. (2024). Learning Fuel-Optimal Trajectories for Space Applications via Pontryagin Neural Networks. Aerospace, 11(3), 228. https://doi.org/10.3390/aerospace11030228
D’Ambrosio, A., Schiassi, E., Curti, F., & Furfaro, R. (2021). Physics-informed neural networks for optimal proximity maneuvers with collision avoidance around asteroids. In 2021 AAS/AIAA Astrodynamics Specialist Conference. Big Sky, MT, United States. https://hdl.handle.net/11573/1576340
Dourado, A., & Viana, F. A. C. (2019). Physics-Informed Neural Networks for Corrosion-Fatigue Prognosis. Annual Conference of the PHM Society, 11(1). https://doi.org/10.36001/phmconf.2019.v11i1.814
Farea, A., Yli-Harja, O., & Emmert-Streib, F. (2024). Understanding Physics-Informed Neural Networks: Techniques, Applications, Trends, and Challenges. AI, 5(3), 1534–1557. https://doi.org/10.3390/ai5030074
Faroughi, S. A., Pawar, N. M., Fernandes, C., Raissi, M., Das, S., Kalantari, N. K., & Kourosh Mahjour, S. (2024). Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks and Operators in Scientific Computing: Fluid and Solid Mechanics. Journal of Computing and Information Science in Engineering, 24(4). https://doi.org/10.1115/1.4064449
Fieramosca, F., Rampa, V., D'Amico, M., & Savazzi, S. (2024). Physics-informed generative neural networks for RF propagation prediction with application to indoor body perception. In 2024 18th European Conference on Antennas and Propagation (EuCAP) (pp. 1-5). IEEE. https://doi.org/10.23919/eucap60739.2024.10501077
Fowler, E., McDevitt, C. J., & Roy, S. (2024). Physics-informed neural network simulation of thermal cavity flow. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-65664-3
Ghaderi, A., Akbari, R., Chen, Y., & Dargazany, R. (2022). A knowledge-driven physics-informed neural network model; pyrolysis and ablation of polymers. arXiv preprint arXiv:2209.11749. https://doi.org/10.48550/arXiv.2209.11749
Ghalambaz, M., Sheremet, M. A., Khan, M. A., Raizah, Z., & Shafi, J. (2024). Physics-informed neural networks (P INNs): application categories, trends and impact. International Journal of Numerical Methods for Heat & Fluid Flow, 34(8), 3131–3165. https://doi.org/10.1108/hff-09-2023-0568
Gholampour, M., Hashemi, Z., Wu, M. C., Liu, T. Y., Liang, C. Y., & Wang, C.-C. (2024). Parameterized physics-informed neural networks for a transient thermal problem: A pure physics-driven approach. International Communications in Heat and Mass Transfer, 159, 108330. https://doi.org/10.1016/j.icheatmasstransfer.2024.108330
Ghosh, A., Elhamod, M., Bu, J., Lee, W.-C., Karpatne, A., & Podolskiy, V. A. (2022). Physics‐Informed Machine Learning for Optical Modes in Composites. Advanced Photonics Research, 3(11). Portico. https://doi.org/10.1002/adpr.202200073
Gigli, C., Saba, A., Ayoub, A. B., & Psaltis, D. (2023). Predicting nonlinear optical scattering with physics-driven neural networks. APL Photonics, 8(2). https://doi.org/10.1063/5.0119186
Gomes, A. T. A., da Silva, L. M., & Valentin, F. (2022). Improving boundary layer predictions using parametric physics-aware neural networks. In Latin American High Performance Computing Conference (pp. 90-102). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-23821-5_7
Gu, W., Primatesta, S., & Rizzo, A. (2024). Physics-informed Neural Network for Quadrotor Dynamical Modeling. Robotics and Autonomous Systems, 171, 104569. https://doi.org/10.1016/j.robot.2023.104569
Gustafsson, E., & Andersson, M. (2024). Investigating the Effects of Labeled Data on Parameterized Physics-Informed Neural Networks for Surrogate Modeling: Design Optimization for Drag Reduction over a Forward-Facing Step. Fluids, 9(12), 296. https://doi.org/10.3390/fluids9120296
Hanrahan, S., Kozul, M., & Sandberg, R. D. (2023). Studying turbulent flows with physics-informed neural networks and sparse data. International Journal of Heat and Fluid Flow, 104, 109232. https://doi.org/10.1016/j.ijheatfluidflow.2023.109232
Harmening, J. H., Pioch, F., Fuhrig, L., Peitzmann, F.-J., Schramm, D., & el Moctar, O. (2024). Data-assisted training of a physics-informed neural network to predict the separated Reynolds-averaged turbulent flow field around an airfoil under variable angles of attack. Neural Computing and Applications, 36(25), 15353–15371. https://doi.org/10.1007/s00521-024-09883-9
Harmening, J. H., Pioch, F., Fuhrig, L., Peitzmann, F.-J., Schramm, D., & el Moctar, O. (2024). Data-assisted training of a physics-informed neural network to predict the separated Reynolds-averaged turbulent flow field around an airfoil under variable angles of attack. Neural Computing and Applications, 36(25), 15353–15371. https://doi.org/10.1007/s00521-024-09883-9
Hijazi, S., Freitag, M., & Landwehr, N. (2023). POD-Galerkin reduced order models and physics-informed neural networks for solving inverse problems for the Navier–Stokes equations. Advanced Modeling and Simulation in Engineering Sciences, 10(1). https://doi.org/10.1186/s40323-023-00242-2
Hu, A. V., & Kabala, Z. J. (2023). Predicting and Reconstructing Aerosol–Cloud–Precipitation Interactions with Physics-Informed Neural Networks. Atmosphere, 14(12), 1798. https://doi.org/10.3390/atmos14121798
Hu, H., Qi, L., & Chao, X. (2024). Physics-informed Neural Networks (PINN) for computational solid mechanics: Numerical frameworks and applications. Thin-Walled Structures, 205, 112495. https://doi.org/10.1016/j.tws.2024.112495
Ihunde, T. A., & Olorode, O. (2022). Application of physics informed neural networks to compositional modeling. Journal of Petroleum Science and Engineering, 211, 110175. https://doi.org/10.1016/j.petrol.2022.110175
Imran Azeem, O. A., & Pinho, S. T. (2024). A physics-informed machine learning model for global-local stress prediction of open holes with finite-width effects in composite structures. Journal of Composite Materials, 58(23), 2501–2514. https://doi.org/10.1177/00219983241281073
Jagtap, A. D., Mao, Z., Adams, N., & Karniadakis, G. E. (2022). Physics-informed neural networks for inverse problems in supersonic flows. Journal of Computational Physics, 466, 111402. https://doi.org/10.1016/j.jcp.2022.111402
Jalili, D., Jang, S., Jadidi, M., Giustini, G., Keshmiri, A., & Mahmoudi, Y. (2024). Physics-informed neural networks for heat transfer prediction in two-phase flows. International Journal of Heat and Mass Transfer, 221, 125089. https://doi.org/10.1016/j.ijheatmasstransfer.2023.125089
Janssen, J. A., Haikal, G., DeCarlo, E. C., Hartnett, M. J., & Kirby, M. L. (2024). A Physics-Informed General Convolutional Network for the Computational Modeling of Materials With Damage. Journal of Computing and Information Science in Engineering, 24(11). https://doi.org/10.1115/1.4063863
Jiao, L., Song, X., You, C., Liu, X., Li, L., Chen, P., Tang, X., Feng, Z., Liu, F., Guo, Y., Yang, S., Li, Y., Zhang, X., Ma, W., Wang, S., Bai, J., & Hou, B. (2024). AI meets physics: a comprehensive survey. Artificial Intelligence Review, 57(9). https://doi.org/10.1007/s10462-024-10874-4
Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P., Wang, S., & Yang, L. (2021). Physics-informed machine learning. Nature Reviews Physics, 3(6), 422–440. https://doi.org/10.1038/s42254-021-00314-5
Ke, Z.-W., Wei, S.-J., Yao, S.-Y., Chen, S., Chen, Y.-M., & Li, Y.-C. (2025). Pre-trained Physics-Informed Neural Networks for Analysis of Contaminant Transport in Soils. Computers and Geotechnics, 180, 107055. https://doi.org/10.1016/j.compgeo.2025.107055
Keshavarz, S., Mao, Y., Reid, A. C. E., & Agrawal, A. (2025). Advancing material simulations: Physics-Informed Neural Networks and Object-Oriented Crystal Plasticity Finite Element Methods. International Journal of Plasticity, 185, 104221. https://doi.org/10.1016/j.ijplas.2024.104221
Khalid, S., Yazdani, M. H., Azad, M. M., Elahi, M. U., Raouf, I., & Kim, H. S. (2024). Advancements in Physics-Informed Neural Networks for Laminated Composites: A Comprehensive Review. Mathematics, 13(1), 17. https://doi.org/10.3390/math13010017
Li, H., Gou, L., Li, H., & Liu, Z. (2023). Physics-Guided Neural Network Model for Aeroengine Control System Sensor Fault Diagnosis under Dynamic Conditions. Aerospace, 10(7), 644. https://doi.org/10.3390/aerospace10070644
Li, H., Zhang, Z., Li, T., & Si, X. (2024). A review on physics-informed data-driven remaining useful life prediction: Challenges and opportunities. Mechanical Systems and Signal Processing, 209, 111120. https://doi.org/10.1016/j.ymssp.2024.111120
Li, Y., & Liu, L. (2024). Physics-Informed Neural Network-Based Nonlinear Model Predictive Control for Automated Guided Vehicle Trajectory Tracking. World Electric Vehicle Journal, 15(10), 460. https://doi.org/10.3390/wevj15100460
Li, Z., Bai, J., Ouyang, H., Martelli, S., Tang, M., Yang, Y., Wei, H., Liu, P., Wei, R., & Gu, Y. (2024). Physics-informed neural networks for friction-involved nonsmooth dynamics problems. Nonlinear Dynamics, 112(9), 7159–7183. https://doi.org/10.1007/s11071-024-09350-z
Liao, W., Long, X., & Jiang, C. (2025). A physics-informed neural network method for identifying parameters and predicting remaining life of fatigue crack growth. International Journal of Fatigue, 191, 108678. https://doi.org/10.1016/j.ijfatigue.2024.108678
Lin, J., Chen, S., Yang, H., Jiang, Q., & Liu, J. (2025). A physics-informed neural network-based aerodynamic parameter identification method for aircraft. Physics of Fluids, 37(2). https://doi.org/10.1063/5.0249130
Liu, T., & Meidani, H. (2023). Physics-Informed Neural Networks for System Identification of Structural Systems with a Multiphysics Damping Model. Journal of Engineering Mechanics, 149(10). https://doi.org/10.1061/jenmdt.emeng-7060
Liu, Y. Y., Shen, J. X., Yang, P. P., & Yang, X. W. (2024). A CNN-PINN-DRL driven method for shape optimization of airfoils. Engineering Applications of Computational Fluid Mechanics, 19(1). https://doi.org/10.1080/19942060.2024.2445144
Luan, X., Pezzoli, M., Antonacci, F., & Sarti, A. (2025b). Physics-Informed Neural Network-Driven Sparse Field Discretization Method for Near-Field Acoustic Holography. arXiv preprint arXiv:2505.00897. https://doi.org/10.48550/arXiv.2505.00897
Luan, X., Yokota, K., & Scavone, G. (2025a). Acoustic Field Reconstruction in Tubes via Physics-Informed Neural Networks. arXiv preprint arXiv:2505.12557. https://doi.org/10.48550/arXiv.2505.12557
Ma, J., Xiang, P., Yao, Q., Jiang, Z., Huang, J., & Li, H. (2025). Optimizing Aircraft Route Planning Based on Data-Driven and Physics-Informed Wind Field Predictions. Mathematics, 13(3), 367. https://doi.org/10.3390/math13030367
Ma, M., Fu, L., Guo, X., & Zhai, Z. (2024). Incorporating Lasso Regression to Physics-Informed Neural Network for Inverse PDE Problem. Computer Modeling in Engineering & Sciences, 141(1), 385–399. https://doi.org/10.32604/cmes.2024.052585
Malashin, I., Tynchenko, V., Gantimurov, A., Nelyub, V., & Borodulin, A. (2025). Physics-Informed Neural Networks in Polymers: A Review. Polymers, 17(8), 1108. https://doi.org/10.3390/polym17081108
Mao, Z., Jagtap, A. D., & Karniadakis, G. E. (2020). Physics-informed neural networks for high-speed flows. Computer Methods in Applied Mechanics and Engineering, 360, 112789. https://doi.org/10.1016/j.cma.2019.112789
Mariappan, S., Nath, K., & Em Karniadakis, G. (2024). Learning thermoacoustic interactions in combustors using a physics-informed neural network. Engineering Applications of Artificial Intelligence, 138, 109388. https://doi.org/10.1016/j.engappai.2024.109388
Meng, X., & Karniadakis, G. E. (2020). A composite neural network that learns from multi-fidelity data: Application to function approximation and inverse PDE problems. Journal of Computational Physics, 401, 109020. https://doi.org/10.1016/j.jcp.2019.109020
Michek, N. E., Mehta, P., & Huebsch, W. W. (2024). Flight dynamic uncertainty quantification modeling using physics-informed neural networks. AIAA Journal, 62(11), 4234-4246. https://doi.org/10.2514/6.2024-0575
Michek, N., Mehta, P., & Huebsch, W. (2023). Methodology Development of a Free-Flight Parameter Estimation Technique Using Physics-Informed Neural Networks. In 2023 IEEE Aerospace Conference (pp. 1-18). IEEE. https://doi.org/10.1109/aero55745.2023.10115728
Mishra, S., & Molinaro, R. (2021). Physics informed neural networks for simulating radiative transfer. Journal of Quantitative Spectroscopy and Radiative Transfer, 270, 107705. https://doi.org/10.1016/j.jqsrt.2021.107705
Moschou, S. P., Hicks, E., Parekh, R. Y., Mathew, D., Majumdar, S., & Vlahakis, N. (2023). Physics-informed neural networks for modeling astrophysical shocks. Machine Learning: Science and Technology, 4(3), 035032. https://doi.org/10.1088/2632-2153/acf116
Mowlavi, S., & Nabi, S. (2023). Optimal control of PDEs using physics-informed neural networks. Journal of Computational Physics, 473, 111731. https://doi.org/10.1016/j.jcp.2022.111731
Muralidhar, N., Bu, J., Cao, Z., He, L., Ramakrishnan, N., Tafti, D., & Karpatne, A. (2019). Physics-guided design and learning of neural networks for predicting drag force on particle suspensions in moving fluids. arXiv preprint arXiv:1911.04240. https://doi.org/10.48550/arXiv.1911.04240
Nguyen, L., Raissi, M., & Seshaiyer, P. (2022). Efficient physics informed neural networks coupled with domain decomposition methods for solving coupled multi-physics problems. In Advances in Computational Modeling and Simulation (pp. 41-53). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-16-7857-8_4
Niu, S., Zhang, E., Bazilevs, Y., & Srivastava, V. (2023). Modeling finite-strain plasticity using physics-informed neural network and assessment of the network performance. Journal of the Mechanics and Physics of Solids, 172, 105177. https://doi.org/10.1016/j.jmps.2022.105177
Oddiraju, M., Hasnain, Z., Bandyopadhyay, S., Sunada, E., & Chowdhury, S. (2024). Physics-Informed Machine Learning Towards a Real-Time Spacecraft Thermal Simulator. AIAA Aviation Forum and Ascend 2024. https://doi.org/10.2514/6.2024-4204
Omarova, P., Amirgaliyev, Y., Kozbakova, A., & Ataniyazova, A. (2023). Application of Physics-Informed Neural Networks to River Silting Simulation. Applied Sciences, 13(21), 11983. https://doi.org/10.3390/app132111983
Parfenyev, V., Blumenau, M., & Nikitin, I. (2024). Inferring Parameters and Reconstruction of Two-Dimensional Turbulent Flows with Physics-Informed Neural Networks. JETP Letters, 120(8), 599–607. https://doi.org/10.1134/s0021364024602203
Pettit, C. L., & Wilson, D. K. (2020). A physics-informed neural network for sound propagation in the atmospheric boundary layer. In Proceedings of Meetings on Acoustics (Vol. 42, No. 1). AIP Publishing. https://doi.org/10.1121/2.0001383
Phạm, T., & Mai, L. (2024). Modeling of 2-phase flow in porous media using physics-informed neural network. VNUHCM Journal of Engineering and Technology, 6(SI7), 111-121. https://stdjet.scienceandtechnology.com.vn/index.php/stdjet/article/view/1247
Qi, S., & Sarris, C. D. (2023). Physics-informed neural networks for multiphysics simulations: Application to coupled electromagnetic-thermal modeling. In 2023 IEEE/MTT-S International Microwave Symposium-IMS 2023 (pp. 166-169). IEEE. https://doi.org/10.1109/ims37964.2023.10188015
Qi, X., de Almeida, G. A. M., & Maldonado, S. (2024). Physics-informed neural networks for solving flow problems modeled by the 2D Shallow Water Equations without labeled data. Journal of Hydrology, 636, 131263. https://doi.org/10.1016/j.jhydrol.2024.131263
Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378, 686–707. https://doi.org/10.1016/j.jcp.2018.10.045
Ramezankhani, M., Deodhar, A., Parekh, R. Y., & Birru, D. (2025). An advanced physics-informed neural operator for comprehensive design optimization of highly-nonlinear systems: An aerospace composites processing case study. Engineering Applications of Artificial Intelligence, 142, 109886. https://doi.org/10.1016/j.engappai.2024.109886
Ranjith, Y. (2023). 2D and 3D Physics Informed Neural Networks to Model Pollution Spread with Obstructions. In Proceedings of the IEEE/ACM 10th International Conference on Big Data Computing, Applications and Technologies (pp. 1-2). https://doi.org/10.1145/3632366.3632380
Ren, X., Hu, P., Su, H., Zhang, F., & Yu, H. (2024). Physics-informed neural networks for transonic flow around a cylinder with high Reynolds number. Physics of Fluids, 36(3). https://doi.org/10.1063/5.0200384
Roehrl, M. A., Runkler, T. A., Brandtstetter, V., Tokic, M., & Obermayer, S. (2020). Modeling System Dynamics with Physics-Informed Neural Networks Based on Lagrangian Mechanics. IFAC-PapersOnLine, 53(2), 9195–9200. https://doi.org/10.1016/j.ifacol.2020.12.2182
Rosofsky, S. G., Al Majed, H., & Huerta, E. A. (2023). Applications of physics informed neural operators. Machine Learning: Science and Technology, 4(2), 025022. https://doi.org/10.1088/2632-2153/acd168
Saba, A., Gigli, C., Ayoub, A. B., & Psaltis, D. (2022). Physics-informed neural networks for diffraction tomography. Advanced Photonics, 4(06). https://doi.org/10.1117/1.ap.4.6.066001
Sahin, T., von Danwitz, M., & Popp, A. (2024). Solving forward and inverse problems of contact mechanics using physics-informed neural networks. Advanced Modeling and Simulation in Engineering Sciences, 11(1). https://doi.org/10.1186/s40323-024-00265-3
Schiassi, E., D’Ambrosio, A., Drozd, K., Curti, F., & Furfaro, R. (2022). Physics-Informed Neural Networks for Optimal Planar Orbit Transfers. Journal of Spacecraft and Rockets, 59(3), 834–849. https://doi.org/10.2514/1.a35138
Schmid, J. D., Bauerschmidt, P., Gurbuz, C., Eser, M., & Marburg, S. (2024). Physics-informed neural networks for acoustic boundary admittance estimation. Mechanical Systems and Signal Processing, 215, 111405. https://doi.org/10.1016/j.ymssp.2024.111405
Schoder, S. (2025). Physics-Informed Neural Networks for Modal Wave Field Predictions in 3D Room Acoustics. Applied Sciences, 15(2), 939. https://doi.org/10.3390/app15020939
Sedykh, A., Podapaka, M., Sagingalieva, A., Pinto, K., Pflitsch, M., & Melnikov, A. (2024). Hybrid quantum physics-informed neural networks for simulating computational fluid dynamics in complex shapes. Machine Learning: Science and Technology, 5(2), 025045. https://doi.org/10.1088/2632-2153/ad43b2
Seyed-Ahmadi, A., & Wachs, A. (2022). Physics-inspired architecture for neural network modeling of forces and torques in particle-laden flows. Computers & Fluids, 238, 105379. https://doi.org/10.1016/j.compfluid.2022.105379
Shadram, Z., Nguyen, T. M., Sideris, A., & Sirignano, W. A. (2022). Physics-aware neural network flame closure for combustion instability modeling in a single-injector engine. Combustion and Flame, 240, 111973. https://doi.org/10.1016/j.combustflame.2021.111973
Shao, K., Wu, Y., & Jia, S. (2023). An Improved Neural Particle Method for Complex Free Surface Flow Simulation Using Physics-Informed Neural Networks. Mathematics, 11(8), 1805. https://doi.org/10.3390/math11081805
Sharma, P., Chung, W. T., Akoush, B., & Ihme, M. (2023). A Review of Physics-Informed Machine Learning in Fluid Mechanics. Energies, 16(5), 2343. https://doi.org/10.3390/en16052343
Shi, Y., & Beer, M. (2024). Physics-informed neural network classification framework for reliability analysis. Expert Systems with Applications, 258, 125207. https://doi.org/10.1016/j.eswa.2024.125207
Singh, V., Harursampath, D., Dhawan, S., Sahni, M., Saxena, S., & Mallick, R. (2024). Physics-Informed Neural Network for Solving a One-Dimensional Solid Mechanics Problem. Modelling, 5(4), 1532–1549. https://doi.org/10.3390/modelling5040080
Son, S., Lee, H., Jeong, D., Oh, K.-Y., & Ho Sun, K. (2023). A novel physics-informed neural network for modeling electromagnetism of a permanent magnet synchronous motor. Advanced Engineering Informatics, 57, 102035. https://doi.org/10.1016/j.aei.2023.102035
Song, M., Tang, X., Xing, J., Liu, K., Luo, K., & Fan, J. (2024). Physics-informed neural networks coupled with flamelet/progress variable model for solving combustion physics considering detailed reaction mechanism. Physics of Fluids, 36(10). https://doi.org/10.1063/5.0227581
Stachiw, T., Crain, A., & Ricciardi, J. (2022). A physics-based neural network for flight dynamics modelling and simulation. Advanced Modeling and Simulation in Engineering Sciences, 9(1). https://doi.org/10.1186/s40323-022-00227-7
Sultan, S., & Zhang, Z. (2024). A comparative investigation of a time‐dependent mesh method and physics‐informed neural networks to analyze the generalized Kolmogorov–Petrovsky–Piskunov equation. International Journal for Numerical Methods in Fluids, 96(5), 651–669. Portico. https://doi.org/10.1002/fld.5259
Sun, H., Liao, Y., Jiang, H., Li, G., & Cui, J. (2024). Physics-informed neural network for velocity prediction in electromagnetic launching manufacturing. Mechanical Systems and Signal Processing, 220, 111671. https://doi.org/10.1016/j.ymssp.2024.111671
Sun, Y., Sengupta, U., & Juniper, M. (2023). Physics-informed deep learning for simultaneous surrogate modeling and PDE-constrained optimization of an airfoil geometry. Computer Methods in Applied Mechanics and Engineering, 411, 116042. https://doi.org/10.1016/j.cma.2023.116042
Tavares, S. M. O., Ribeiro, J. A., Ribeiro, B. A., & de Castro, P. M. S. T. (2024). Aircraft Structural Design and Life-Cycle Assessment through Digital Twins. Designs, 8(2), 29. https://doi.org/10.3390/designs8020029
Teloli, R. de O., Tittarelli, R., Bigot, M., Coelho, L., Ramasso, E., Moal, P. L., & Ouisse, M. (2025). A physics-informed neural networks framework for model parameter identification of beam-like structures. Mechanical Systems and Signal Processing, 224, 112189. https://doi.org/10.1016/j.ymssp.2024.112189
Ünal, H. S., & Durgun, A. C. (2025). A physics-aware neural network for effective refractive index prediction of photonic waveguides. Optical and Quantum Electronics, 57(1). https://doi.org/10.1007/s11082-024-08009-8
Varey, J., Ruprecht, J. D., Tierney, M., & Sullenberger, R. (2024). Physics-Informed Neural Networks for Satellite State Estimation. In 2024 IEEE Aerospace Conference (pp. 1-8). IEEE. https://doi.org/10.1109/aero58975.2024.10521414
Wang, B., Guo, Z., Liu, J., Wang, Y., & Xiong, F. (2024). Geophysical Frequency Domain Electromagnetic Field Simulation Using Physics-Informed Neural Network. Mathematics, 12(23), 3873. https://doi.org/10.3390/math12233873
Wang, Y.-C., Xing, J.-K., Luo, K., Wang, H.-O., & Fan, J.-R. (2022). Solving combustion chemical differential equations via physics-informed neural network. Journal of Zhejiang University (Engineering Science), 56(10), 2084–2092. https://doi.org/10.3785/j.issn.1008-973X.2022.10.020
Wassing, S., Langer, S., & Bekemeyer, P. (2024). Physics-informed neural networks for parametric compressible Euler equations. Computers & Fluids, 270, 106164. https://doi.org/10.1016/j.compfluid.2023.106164
Wassing, S., Langer, S., & Bekemeyer, P. (2025). Physics-Informed Neural Networks for Transonic Flows around an Airfoil. arXiv:2408.17364v3. https://doi.org/10.48550/arXiv.2408.17364
Xu, C., Cao, B. T., Yuan, Y., & Meschke, G. (2023). Transfer learning based physics-informed neural networks for solving inverse problems in engineering structures under different loading scenarios. Computer Methods in Applied Mechanics and Engineering, 405, 115852. https://doi.org/10.1016/j.cma.2022.115852
Yan, C. A., Vescovini, R., & Dozio, L. (2022). A framework based on physics-informed neural networks and extreme learning for the analysis of composite structures. Computers & Structures, 265, 106761. https://doi.org/10.1016/j.compstruc.2022.106761
Yan, H., Wang, Y., Yan, Y., & Cui, J. (2023). Physics-Informed Neural Network for Flow Prediction Based on Flow Visualization in Bridge Engineering. Atmosphere, 14(4), 759. https://doi.org/10.3390/atmos14040759
Yan, X., Lin, J., Wang, S., Zhang, Z., Liu, P., Sun, S., Yao, J., & Zhang, K. (2024). Physics-informed neural network simulation of two-phase flow in heterogeneous and fractured porous media. Advances in Water Resources, 189, 104731. https://doi.org/10.1016/j.advwatres.2024.104731
Yang, D., Jin, A., & Li, Y. (2024). A Novel Physics-Guided Neural Network for Predicting Fatigue Life of Materials. Applied Sciences, 14(6), 2502. https://doi.org/10.3390/app14062502
Yang, H., Ren, F., Song, Y.-J., Yu, H.-S., & Chen, X. (2024). Physics-informed neural network solution for thermo-elastic cavity expansion problem. Geomechanics and Geoengineering, 1–11. https://doi.org/10.1080/17486025.2024.2414849
Yang, L., Meng, X., & Karniadakis, G. E. (2021). B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data. Journal of Computational Physics, 425, 109913. https://doi.org/10.1016/j.jcp.2020.109913
Yang, Z., Xu, Y., Jing, J., Fu, X., Wang, B., Ren, H., Zhang, M., & Sun, T. (2023). Investigation of Physics-Informed Neural Networks to Reconstruct a Flow Field with High Resolution. Journal of Marine Science and Engineering, 11(11), 2045. https://doi.org/10.3390/jmse11112045
Yazdani, S., & Tahani, M. (2024). Data-driven discovery of turbulent flow equations using physics-informed neural networks. Physics of Fluids, 36(3). https://doi.org/10.1063/5.0190138
Yokota, K., Kurahashi, T., & Abe, M. (2024). Physics-informed neural network for acoustic resonance analysis in a one-dimensional acoustic tube. The Journal of the Acoustical Society of America, 156(1), 30–43. https://doi.org/10.1121/10.0026459
Yucesan, Y. A., & Viana, F. A. C. (2023). A Physics-informed Neural Network for Wind Turbine Main Bearing Fatigue. International Journal of Prognostics and Health Management, 11(1). https://doi.org/10.36001/ijphm.2020.v11i1.2594
Zhang, C., Wen, C.-Y., Jia, Y., Juan, Y.-H., Lee, Y.-T., Chen, Z., Yang, A.-S., & Li, Z. (2024). Enhancing the accuracy of physics-informed neural networks for indoor airflow simulation with experimental data and Reynolds-averaged Navier–Stokes turbulence model. Physics of Fluids, 36(6). https://doi.org/10.1063/5.0216394
Zhang, E., Dao, M., Karniadakis, G. E., & Suresh, S. (2022). Analyses of internal structures and defects in materials using physics-informed neural networks. Science Advances, 8(7). https://doi.org/10.1126/sciadv.abk0644
Zhang, J., Braga-Neto, U., & Gildin, E. (2024). Physics-Informed Neural Networks for Multiphase Flow in Porous Media Considering Dual Shocks and Interphase Solubility. Energy & Fuels, 38(18), 17781–17795. https://doi.org/10.1021/acs.energyfuels.4c02888
Zhang, R., Xu, N., Zhang, K., Wang, L., & Lu, G. (2023). A Parametric Physics-Informed Deep Learning Method for Probabilistic Design of Thermal Protection Systems. Energies, 16(9), 3820. https://doi.org/10.3390/en16093820
Zhang, S., Zhang, C., & Wang, B. (2024). CRK-PINN: A physics-informed neural network for solving combustion reaction kinetics ordinary differential equations. Combustion and Flame, 269, 113647. https://doi.org/10.1016/j.combustflame.2024.113647
Zhao, C., Zhang, F., Lou, W., Wang, X., & Yang, J. (2024). A comprehensive review of advances in physics-informed neural networks and their applications in complex fluid dynamics. Physics of Fluids, 36(10). https://doi.org/10.1063/5.0226562
Zhao, X., Gong, Z., Zhang, Y., Yao, W., & Chen, X. (2023). Physics-informed convolutional neural networks for temperature field prediction of heat source layout without labeled data. Engineering Applications of Artificial Intelligence, 117, 105516. https://doi.org/10.1016/j.engappai.2022.105516
Zhou, W., Miwa, S., & Okamoto, K. (2024). Physics-informed neural networks for two-phase flow simulations: An integrated approach with advanced interface tracking methods. In Proceedings of the 38th National Conference of the Japanese Society for Artificial Intelligence (pp. 4Q1IS2c02-4Q1IS2c02). The Japanese Society for Artificial Intelligence. https://doi.org/10.11517/pjsai.JSAI2024.0_4Q1IS2c02
Zhu, D., Peng, J., & Ding, C. (2024). A Neural Network with Physical Mechanism for Predicting Airport Aviation Noise. Aerospace, 11(9), 747. https://doi.org/10.3390/aerospace11090747
Zhu, X., Hu, X., & Sun, P. (2023). Physics-Informed Neural Networks for Solving Dynamic Two-Phase Interface Problems. SIAM Journal on Scientific Computing, 45(6), A2912–A2944. https://doi.org/10.1137/22m1517081
Zhu, Y., Chen, W., Deng, J., & Bian, X. (2025). Physics-informed neural networks for hidden boundary detection and flow field reconstruction. arXiv preprint arXiv:2503.24074. https://doi.org/10.48550/arXiv.2503.24074
Zucker, S., Batenkov, D., & Rozenhaimer, M. S. (2025). Physics-informed neural networks for modeling atmospheric radiative transfer. Journal of Quantitative Spectroscopy and Radiative Transfer, 331, 109253. https://doi.org/10.1016/j.jqsrt.2024.109253
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2025 Yurii Tkachov, Oleh Murashko (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in the journal Challenges and Issues of Modern Science are licensed under the Creative Commons Attribution 4.0 International (CC BY) license. This means that you are free to:
- Share, copy, and redistribute the article in any medium or format
- Adapt, remix, transform, and build upon the article
as long as you provide appropriate credit to the original work, include the authors' names, article title, journal name, and indicate that the work is licensed under CC BY. Any use of the material should not imply endorsement by the authors or the journal.