Forthcoming

Physics-Informed Neural Networks in Aerospace: A Structured Taxonomy with Literature Review

Authors

Keywords:

Physics-Informed Neural Networks (PINNs), aerospace engineering, machine learning, mathematical simulation, flight vehicles, aerospace design

Abstract

Purpose. This study aims to develop a structured four-tier taxonomy that systematically organizes aerospace engineering tasks suitable for the application of Physics-Informed Neural Networks (PINNs), while validating this classification through a literature review and identifying opportunities for future research. Design / Method / Approach. The methodology involves grouping tasks into four distinct tiers—Physical Modeling, Dynamic Analysis, Functional Assessment, and System-Level Assessment—based on their physical, operational, and systemic characteristics. This framework is subsequently populated with real-world examples derived from the analysis of 145 peer-reviewed studies. Findings. The reviewed literature confirms a balanced distribution of PINNs applications across all tiers. Contrary to initial assumptions, studies were identified even in areas previously presumed underrepresented, such as acoustic modeling, optical simulations, and environmental impact assessment. This outcome reveals the broader applicability of PINNs and calls for a reassessment of current assumptions regarding underexplored domains. Theoretical Implications. The proposed taxonomy offers a coherent framework for structuring interdisciplinary PINNs applications by integrating physics-based modeling with machine learning across aerospace engineering contexts. Practical Implications. It provides engineers and researchers with a practical roadmap for selecting PINNs methods tailored to specific problem types, potentially improving computational efficiency and enhancing predictive accuracy in aerospace design and analysis. Originality / Value. The study’s originality lies in its empirically validated, four-tier taxonomy that synthesizes the fragmented body of literature on PINNs in aerospace, offering a unified perspective for researchers and practitioners. Research Limitations / Future Research. While the taxonomy covers a wide range of existing applications, future studies should consider extending it with new tiers—particularly related to manufacturing-aware modeling—and pursue methodological standardization to ensure reproducibility and scalability. Article Type. Review.

PURL: https://purl.org/cims/4.313

Downloads

Download data is not yet available.

References

Abdulkadirov, R., Lyakhov, P., Butusov, D., Nagornov, N., & Kalita, D. (2025). Physics-Aware Machine Learning Approach for High-Precision Quadcopter Dynamics Modeling. Drones, 9(3), 187. https://doi.org/10.3390/drones9030187

Almajid, M. M., & Abu-Al-Saud, M. O. (2022). Prediction of porous media fluid flow using physics informed neural networks. Journal of Petroleum Science and Engineering, 208, 109205. https://doi.org/10.1016/j.petrol.2021.109205

Ang, E., & Ng, B. F. (2022). Physics-informed neural networks for flow around airfoil. In AIAA Scitech 2022 Forum (p. 0187). https://doi.org/10.2514/6.2022-0187

Antonelo, E. A., Camponogara, E., Seman, L. O., Jordanou, J. P., de Souza, E. R., & Hübner, J. F. (2024). Physics-informed neural nets for control of dynamical systems. Neurocomputing, 579, 127419. https://doi.org/10.1016/j.neucom.2024.127419

Arzani, A., Cassel, K. W., & D’Souza, R. M. (2023). Theory-guided physics-informed neural networks for boundary layer problems with singular perturbation. Journal of Computational Physics, 473, 111768. https://doi.org/10.1016/j.jcp.2022.111768

Aygun, A., & Karakus, A. (2022). Physics informed neural networks for two dimensional incompressible thermal convection problems. Isı Bilimi ve Tekniği Dergisi, 42(2), 221-232. https://doi.org/10.47480/isibted.1194992

Aygun, A., Maulik, R., & Karakus, A. (2023). Physics-informed neural networks for mesh deformation with exact boundary enforcement. Engineering Applications of Artificial Intelligence, 125, 106660. https://doi.org/10.1016/j.engappai.2023.106660

Baldan, M., Di Barba, P., & Lowther, D. A. (2023). Physics-Informed Neural Networks for Inverse Electromagnetic Problems. IEEE Transactions on Magnetics, 59(5), 1–5. https://doi.org/10.1109/tmag.2023.3247023

Bararnia, H., & Esmaeilpour, M. (2022). On the application of physics informed neural networks (PINN) to solve boundary layer thermal-fluid problems. International Communications in Heat and Mass Transfer, 132, 105890. https://doi.org/10.1016/j.icheatmasstransfer.2022.105890

Barmada, S., Barba, P. D., Formisano, A., Mognaschi, M. E., & Tucci, M. (2024). Physics-informed Neural Networks for the Resolution of Analysis Problems in Electromagnetics. The Applied Computational Electromagnetics Society Journal (ACES), 841–848. https://doi.org/10.13052/2023.aces.j.381102

Bastek, J.-H., & Kochmann, D. M. (2023). Physics-Informed Neural Networks for shell structures. European Journal of Mechanics - A/Solids, 97, 104849. https://doi.org/10.1016/j.euromechsol.2022.104849

Beitalmal, A. O. (2025). A Hybrid Physics-Informed Neural Network (PINN) And Finite Element Method (FEM) Framework for Multiscale Fluid-Structure Interaction Problems. RA Journal of Applied Research, 11(04). https://doi.org/10.47191/rajar/v11i4.11

Bianchi, D., Epicoco, N., Di Ferdinando, M., Di Gennaro, S., & Pepe, P. (2024). Physics-Informed Neural Networks for Unmanned Aerial Vehicle System Estimation. Drones, 8(12), 716. https://doi.org/10.3390/drones8120716

Bobzin, K., Heinemann, H., & Dokhanchi, A. (2025). Physics-Informed Neural Networks for Predicting Particle Properties in Plasma Spraying. Journal of Thermal Spray Technology, 34(2–3), 885–892. https://doi.org/10.1007/s11666-025-01965-x

Borate, P., Rivière, J., Marone, C., Mali, A., Kifer, D., & Shokouhi, P. (2023). Using a physics-informed neural network and fault zone acoustic monitoring to predict lab earthquakes. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-39377-6

Bowman, B., Oian, C., Kurz, J., Khan, T., Gil, E., & Gamez, N. (2023). Physics-Informed Neural Networks for the Heat Equation with Source Term under Various Boundary Conditions. Algorithms, 16(9), 428. https://doi.org/10.3390/a16090428

Brumand-Poor, F., Barlog, F., Plückhahn, N., Thebelt, M., Bauer, N., & Schmitz, K. (2024). Physics-Informed Neural Networks for the Reynolds Equation with Transient Cavitation Modeling. Lubricants, 12(11), 365. https://doi.org/10.3390/lubricants12110365

Cai, S., Wang, Z., Wang, S., Perdikaris, P., & Karniadakis, G. E. (2021). Physics-Informed Neural Networks for Heat Transfer Problems. Journal of Heat Transfer, 143(6). https://doi.org/10.1115/1.4050542

Cao, W., Song, J., & Zhang, W. (2024). A solver for subsonic flow around airfoils based on physics-informed neural networks and mesh transformation. Physics of Fluids, 36(2). https://doi.org/10.1063/5.0188665

Chatterjee, T., Friswell, M. I., Adhikari, S., & Khodaparast, H. H. (2024). MATLAB Implementation of Physics Informed Deep Neural Networks for Forward and Inverse Structural Vibration Problems. Aerospace Research Communications, 2. https://doi.org/10.3389/arc.2024.13194

Chen, D., Li, Y., Liu, K., & Li, Y. (2023). A physics-informed neural network approach to fatigue life prediction using small quantity of samples. International Journal of Fatigue, 166, 107270. https://doi.org/10.1016/j.ijfatigue.2022.107270

Chen, L., Li, B., Luo, C., & Lei, X. (2024). WaveNets: physics-informed neural networks for full-field recovery of rotational flow beneath large-amplitude periodic water waves. Engineering with Computers, 40(5), 2819–2839. https://doi.org/10.1007/s00366-024-01944-w

Chen, Y., & Dal Negro, L. (2022). Physics-informed neural networks for imaging and parameter retrieval of photonic nanostructures from near-field data. APL Photonics, 7(1). https://doi.org/10.1063/5.0072969

Chen, Y., Wang, C., Hui, Y., Shah, N. V., & Spivack, M. (2024). Surface Profile Recovery from Electromagnetic Fields with Physics-Informed Neural Networks. Remote Sensing, 16(22), 4124. https://doi.org/10.3390/rs16224124

Chen, Z., Dai, Y., & Liu, Y. (2024). Crack propagation simulation and overload fatigue life prediction via enhanced physics-informed neural networks. International Journal of Fatigue, 186, 108382. https://doi.org/10.1016/j.ijfatigue.2024.108382

Chen, Z., Gao, J., Wang, W., & Yan, Z. (2021). Physics-informed generative neural network: an application to troposphere temperature prediction. Environmental Research Letters, 16(6), 065003. https://doi.org/10.1088/1748-9326/abfde9

Chifu, V. R., Cioara, T., Pop, C. B., Anghel, I., & Pelle, A. (2024). Physics-Informed Neural Networks for Heat Pump Load Prediction. Energies, 18(1), 8. https://doi.org/10.3390/en18010008

Choi, T., & Lee, D. (2023). Physics-Informed, Data-Driven Model for Atmospheric Corrosion of Carbon Steel Using Bayesian Network. Materials, 16(15), 5326. https://doi.org/10.3390/ma16155326

Chuprov, I., Derkach, D., Efremenko, D., & Kychkin, A. (2025). Application of Physics-Informed Neural Networks for Solving the Inverse Advection-Diffusion Problem to Localize Pollution Sources. arXiv preprint arXiv:2503.18849. https://doi.org/10.48550/arXiv.2503.18849

D’Ambrosio, A., & Furfaro, R. (2024). Learning Fuel-Optimal Trajectories for Space Applications via Pontryagin Neural Networks. Aerospace, 11(3), 228. https://doi.org/10.3390/aerospace11030228

D’Ambrosio, A., Schiassi, E., Curti, F., & Furfaro, R. (2021). Physics-informed neural networks for optimal proximity maneuvers with collision avoidance around asteroids. In 2021 AAS/AIAA Astrodynamics Specialist Conference. Big Sky, MT, United States. https://hdl.handle.net/11573/1576340

Dourado, A., & Viana, F. A. C. (2019). Physics-Informed Neural Networks for Corrosion-Fatigue Prognosis. Annual Conference of the PHM Society, 11(1). https://doi.org/10.36001/phmconf.2019.v11i1.814

Farea, A., Yli-Harja, O., & Emmert-Streib, F. (2024). Understanding Physics-Informed Neural Networks: Techniques, Applications, Trends, and Challenges. AI, 5(3), 1534–1557. https://doi.org/10.3390/ai5030074

Faroughi, S. A., Pawar, N. M., Fernandes, C., Raissi, M., Das, S., Kalantari, N. K., & Kourosh Mahjour, S. (2024). Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks and Operators in Scientific Computing: Fluid and Solid Mechanics. Journal of Computing and Information Science in Engineering, 24(4). https://doi.org/10.1115/1.4064449

Fieramosca, F., Rampa, V., D'Amico, M., & Savazzi, S. (2024). Physics-informed generative neural networks for RF propagation prediction with application to indoor body perception. In 2024 18th European Conference on Antennas and Propagation (EuCAP) (pp. 1-5). IEEE. https://doi.org/10.23919/eucap60739.2024.10501077

Fowler, E., McDevitt, C. J., & Roy, S. (2024). Physics-informed neural network simulation of thermal cavity flow. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-65664-3

Ghaderi, A., Akbari, R., Chen, Y., & Dargazany, R. (2022). A knowledge-driven physics-informed neural network model; pyrolysis and ablation of polymers. arXiv preprint arXiv:2209.11749. https://doi.org/10.48550/arXiv.2209.11749

Ghalambaz, M., Sheremet, M. A., Khan, M. A., Raizah, Z., & Shafi, J. (2024). Physics-informed neural networks (P INNs): application categories, trends and impact. International Journal of Numerical Methods for Heat & Fluid Flow, 34(8), 3131–3165. https://doi.org/10.1108/hff-09-2023-0568

Gholampour, M., Hashemi, Z., Wu, M. C., Liu, T. Y., Liang, C. Y., & Wang, C.-C. (2024). Parameterized physics-informed neural networks for a transient thermal problem: A pure physics-driven approach. International Communications in Heat and Mass Transfer, 159, 108330. https://doi.org/10.1016/j.icheatmasstransfer.2024.108330

Ghosh, A., Elhamod, M., Bu, J., Lee, W.-C., Karpatne, A., & Podolskiy, V. A. (2022). Physics‐Informed Machine Learning for Optical Modes in Composites. Advanced Photonics Research, 3(11). Portico. https://doi.org/10.1002/adpr.202200073

Gigli, C., Saba, A., Ayoub, A. B., & Psaltis, D. (2023). Predicting nonlinear optical scattering with physics-driven neural networks. APL Photonics, 8(2). https://doi.org/10.1063/5.0119186

Gomes, A. T. A., da Silva, L. M., & Valentin, F. (2022). Improving boundary layer predictions using parametric physics-aware neural networks. In Latin American High Performance Computing Conference (pp. 90-102). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-23821-5_7

Gu, W., Primatesta, S., & Rizzo, A. (2024). Physics-informed Neural Network for Quadrotor Dynamical Modeling. Robotics and Autonomous Systems, 171, 104569. https://doi.org/10.1016/j.robot.2023.104569

Gustafsson, E., & Andersson, M. (2024). Investigating the Effects of Labeled Data on Parameterized Physics-Informed Neural Networks for Surrogate Modeling: Design Optimization for Drag Reduction over a Forward-Facing Step. Fluids, 9(12), 296. https://doi.org/10.3390/fluids9120296

Hanrahan, S., Kozul, M., & Sandberg, R. D. (2023). Studying turbulent flows with physics-informed neural networks and sparse data. International Journal of Heat and Fluid Flow, 104, 109232. https://doi.org/10.1016/j.ijheatfluidflow.2023.109232

Harmening, J. H., Pioch, F., Fuhrig, L., Peitzmann, F.-J., Schramm, D., & el Moctar, O. (2024). Data-assisted training of a physics-informed neural network to predict the separated Reynolds-averaged turbulent flow field around an airfoil under variable angles of attack. Neural Computing and Applications, 36(25), 15353–15371. https://doi.org/10.1007/s00521-024-09883-9

Harmening, J. H., Pioch, F., Fuhrig, L., Peitzmann, F.-J., Schramm, D., & el Moctar, O. (2024). Data-assisted training of a physics-informed neural network to predict the separated Reynolds-averaged turbulent flow field around an airfoil under variable angles of attack. Neural Computing and Applications, 36(25), 15353–15371. https://doi.org/10.1007/s00521-024-09883-9

Hijazi, S., Freitag, M., & Landwehr, N. (2023). POD-Galerkin reduced order models and physics-informed neural networks for solving inverse problems for the Navier–Stokes equations. Advanced Modeling and Simulation in Engineering Sciences, 10(1). https://doi.org/10.1186/s40323-023-00242-2

Hu, A. V., & Kabala, Z. J. (2023). Predicting and Reconstructing Aerosol–Cloud–Precipitation Interactions with Physics-Informed Neural Networks. Atmosphere, 14(12), 1798. https://doi.org/10.3390/atmos14121798

Hu, H., Qi, L., & Chao, X. (2024). Physics-informed Neural Networks (PINN) for computational solid mechanics: Numerical frameworks and applications. Thin-Walled Structures, 205, 112495. https://doi.org/10.1016/j.tws.2024.112495

Ihunde, T. A., & Olorode, O. (2022). Application of physics informed neural networks to compositional modeling. Journal of Petroleum Science and Engineering, 211, 110175. https://doi.org/10.1016/j.petrol.2022.110175

Imran Azeem, O. A., & Pinho, S. T. (2024). A physics-informed machine learning model for global-local stress prediction of open holes with finite-width effects in composite structures. Journal of Composite Materials, 58(23), 2501–2514. https://doi.org/10.1177/00219983241281073

Jagtap, A. D., Mao, Z., Adams, N., & Karniadakis, G. E. (2022). Physics-informed neural networks for inverse problems in supersonic flows. Journal of Computational Physics, 466, 111402. https://doi.org/10.1016/j.jcp.2022.111402

Jalili, D., Jang, S., Jadidi, M., Giustini, G., Keshmiri, A., & Mahmoudi, Y. (2024). Physics-informed neural networks for heat transfer prediction in two-phase flows. International Journal of Heat and Mass Transfer, 221, 125089. https://doi.org/10.1016/j.ijheatmasstransfer.2023.125089

Janssen, J. A., Haikal, G., DeCarlo, E. C., Hartnett, M. J., & Kirby, M. L. (2024). A Physics-Informed General Convolutional Network for the Computational Modeling of Materials With Damage. Journal of Computing and Information Science in Engineering, 24(11). https://doi.org/10.1115/1.4063863

Jiao, L., Song, X., You, C., Liu, X., Li, L., Chen, P., Tang, X., Feng, Z., Liu, F., Guo, Y., Yang, S., Li, Y., Zhang, X., Ma, W., Wang, S., Bai, J., & Hou, B. (2024). AI meets physics: a comprehensive survey. Artificial Intelligence Review, 57(9). https://doi.org/10.1007/s10462-024-10874-4

Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P., Wang, S., & Yang, L. (2021). Physics-informed machine learning. Nature Reviews Physics, 3(6), 422–440. https://doi.org/10.1038/s42254-021-00314-5

Ke, Z.-W., Wei, S.-J., Yao, S.-Y., Chen, S., Chen, Y.-M., & Li, Y.-C. (2025). Pre-trained Physics-Informed Neural Networks for Analysis of Contaminant Transport in Soils. Computers and Geotechnics, 180, 107055. https://doi.org/10.1016/j.compgeo.2025.107055

Keshavarz, S., Mao, Y., Reid, A. C. E., & Agrawal, A. (2025). Advancing material simulations: Physics-Informed Neural Networks and Object-Oriented Crystal Plasticity Finite Element Methods. International Journal of Plasticity, 185, 104221. https://doi.org/10.1016/j.ijplas.2024.104221

Khalid, S., Yazdani, M. H., Azad, M. M., Elahi, M. U., Raouf, I., & Kim, H. S. (2024). Advancements in Physics-Informed Neural Networks for Laminated Composites: A Comprehensive Review. Mathematics, 13(1), 17. https://doi.org/10.3390/math13010017

Li, H., Gou, L., Li, H., & Liu, Z. (2023). Physics-Guided Neural Network Model for Aeroengine Control System Sensor Fault Diagnosis under Dynamic Conditions. Aerospace, 10(7), 644. https://doi.org/10.3390/aerospace10070644

Li, H., Zhang, Z., Li, T., & Si, X. (2024). A review on physics-informed data-driven remaining useful life prediction: Challenges and opportunities. Mechanical Systems and Signal Processing, 209, 111120. https://doi.org/10.1016/j.ymssp.2024.111120

Li, Y., & Liu, L. (2024). Physics-Informed Neural Network-Based Nonlinear Model Predictive Control for Automated Guided Vehicle Trajectory Tracking. World Electric Vehicle Journal, 15(10), 460. https://doi.org/10.3390/wevj15100460

Li, Z., Bai, J., Ouyang, H., Martelli, S., Tang, M., Yang, Y., Wei, H., Liu, P., Wei, R., & Gu, Y. (2024). Physics-informed neural networks for friction-involved nonsmooth dynamics problems. Nonlinear Dynamics, 112(9), 7159–7183. https://doi.org/10.1007/s11071-024-09350-z

Liao, W., Long, X., & Jiang, C. (2025). A physics-informed neural network method for identifying parameters and predicting remaining life of fatigue crack growth. International Journal of Fatigue, 191, 108678. https://doi.org/10.1016/j.ijfatigue.2024.108678

Lin, J., Chen, S., Yang, H., Jiang, Q., & Liu, J. (2025). A physics-informed neural network-based aerodynamic parameter identification method for aircraft. Physics of Fluids, 37(2). https://doi.org/10.1063/5.0249130

Liu, T., & Meidani, H. (2023). Physics-Informed Neural Networks for System Identification of Structural Systems with a Multiphysics Damping Model. Journal of Engineering Mechanics, 149(10). https://doi.org/10.1061/jenmdt.emeng-7060

Liu, Y. Y., Shen, J. X., Yang, P. P., & Yang, X. W. (2024). A CNN-PINN-DRL driven method for shape optimization of airfoils. Engineering Applications of Computational Fluid Mechanics, 19(1). https://doi.org/10.1080/19942060.2024.2445144

Luan, X., Pezzoli, M., Antonacci, F., & Sarti, A. (2025b). Physics-Informed Neural Network-Driven Sparse Field Discretization Method for Near-Field Acoustic Holography. arXiv preprint arXiv:2505.00897. https://doi.org/10.48550/arXiv.2505.00897

Luan, X., Yokota, K., & Scavone, G. (2025a). Acoustic Field Reconstruction in Tubes via Physics-Informed Neural Networks. arXiv preprint arXiv:2505.12557. https://doi.org/10.48550/arXiv.2505.12557

Ma, J., Xiang, P., Yao, Q., Jiang, Z., Huang, J., & Li, H. (2025). Optimizing Aircraft Route Planning Based on Data-Driven and Physics-Informed Wind Field Predictions. Mathematics, 13(3), 367. https://doi.org/10.3390/math13030367

Ma, M., Fu, L., Guo, X., & Zhai, Z. (2024). Incorporating Lasso Regression to Physics-Informed Neural Network for Inverse PDE Problem. Computer Modeling in Engineering & Sciences, 141(1), 385–399. https://doi.org/10.32604/cmes.2024.052585

Malashin, I., Tynchenko, V., Gantimurov, A., Nelyub, V., & Borodulin, A. (2025). Physics-Informed Neural Networks in Polymers: A Review. Polymers, 17(8), 1108. https://doi.org/10.3390/polym17081108

Mao, Z., Jagtap, A. D., & Karniadakis, G. E. (2020). Physics-informed neural networks for high-speed flows. Computer Methods in Applied Mechanics and Engineering, 360, 112789. https://doi.org/10.1016/j.cma.2019.112789

Mariappan, S., Nath, K., & Em Karniadakis, G. (2024). Learning thermoacoustic interactions in combustors using a physics-informed neural network. Engineering Applications of Artificial Intelligence, 138, 109388. https://doi.org/10.1016/j.engappai.2024.109388

Meng, X., & Karniadakis, G. E. (2020). A composite neural network that learns from multi-fidelity data: Application to function approximation and inverse PDE problems. Journal of Computational Physics, 401, 109020. https://doi.org/10.1016/j.jcp.2019.109020

Michek, N. E., Mehta, P., & Huebsch, W. W. (2024). Flight dynamic uncertainty quantification modeling using physics-informed neural networks. AIAA Journal, 62(11), 4234-4246. https://doi.org/10.2514/6.2024-0575

Michek, N., Mehta, P., & Huebsch, W. (2023). Methodology Development of a Free-Flight Parameter Estimation Technique Using Physics-Informed Neural Networks. In 2023 IEEE Aerospace Conference (pp. 1-18). IEEE. https://doi.org/10.1109/aero55745.2023.10115728

Mishra, S., & Molinaro, R. (2021). Physics informed neural networks for simulating radiative transfer. Journal of Quantitative Spectroscopy and Radiative Transfer, 270, 107705. https://doi.org/10.1016/j.jqsrt.2021.107705

Moschou, S. P., Hicks, E., Parekh, R. Y., Mathew, D., Majumdar, S., & Vlahakis, N. (2023). Physics-informed neural networks for modeling astrophysical shocks. Machine Learning: Science and Technology, 4(3), 035032. https://doi.org/10.1088/2632-2153/acf116

Mowlavi, S., & Nabi, S. (2023). Optimal control of PDEs using physics-informed neural networks. Journal of Computational Physics, 473, 111731. https://doi.org/10.1016/j.jcp.2022.111731

Muralidhar, N., Bu, J., Cao, Z., He, L., Ramakrishnan, N., Tafti, D., & Karpatne, A. (2019). Physics-guided design and learning of neural networks for predicting drag force on particle suspensions in moving fluids. arXiv preprint arXiv:1911.04240. https://doi.org/10.48550/arXiv.1911.04240

Nguyen, L., Raissi, M., & Seshaiyer, P. (2022). Efficient physics informed neural networks coupled with domain decomposition methods for solving coupled multi-physics problems. In Advances in Computational Modeling and Simulation (pp. 41-53). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-16-7857-8_4

Niu, S., Zhang, E., Bazilevs, Y., & Srivastava, V. (2023). Modeling finite-strain plasticity using physics-informed neural network and assessment of the network performance. Journal of the Mechanics and Physics of Solids, 172, 105177. https://doi.org/10.1016/j.jmps.2022.105177

Oddiraju, M., Hasnain, Z., Bandyopadhyay, S., Sunada, E., & Chowdhury, S. (2024). Physics-Informed Machine Learning Towards a Real-Time Spacecraft Thermal Simulator. AIAA Aviation Forum and Ascend 2024. https://doi.org/10.2514/6.2024-4204

Omarova, P., Amirgaliyev, Y., Kozbakova, A., & Ataniyazova, A. (2023). Application of Physics-Informed Neural Networks to River Silting Simulation. Applied Sciences, 13(21), 11983. https://doi.org/10.3390/app132111983

Parfenyev, V., Blumenau, M., & Nikitin, I. (2024). Inferring Parameters and Reconstruction of Two-Dimensional Turbulent Flows with Physics-Informed Neural Networks. JETP Letters, 120(8), 599–607. https://doi.org/10.1134/s0021364024602203

Pettit, C. L., & Wilson, D. K. (2020). A physics-informed neural network for sound propagation in the atmospheric boundary layer. In Proceedings of Meetings on Acoustics (Vol. 42, No. 1). AIP Publishing. https://doi.org/10.1121/2.0001383

Phạm, T., & Mai, L. (2024). Modeling of 2-phase flow in porous media using physics-informed neural network. VNUHCM Journal of Engineering and Technology, 6(SI7), 111-121. https://stdjet.scienceandtechnology.com.vn/index.php/stdjet/article/view/1247

Qi, S., & Sarris, C. D. (2023). Physics-informed neural networks for multiphysics simulations: Application to coupled electromagnetic-thermal modeling. In 2023 IEEE/MTT-S International Microwave Symposium-IMS 2023 (pp. 166-169). IEEE. https://doi.org/10.1109/ims37964.2023.10188015

Qi, X., de Almeida, G. A. M., & Maldonado, S. (2024). Physics-informed neural networks for solving flow problems modeled by the 2D Shallow Water Equations without labeled data. Journal of Hydrology, 636, 131263. https://doi.org/10.1016/j.jhydrol.2024.131263

Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378, 686–707. https://doi.org/10.1016/j.jcp.2018.10.045

Ramezankhani, M., Deodhar, A., Parekh, R. Y., & Birru, D. (2025). An advanced physics-informed neural operator for comprehensive design optimization of highly-nonlinear systems: An aerospace composites processing case study. Engineering Applications of Artificial Intelligence, 142, 109886. https://doi.org/10.1016/j.engappai.2024.109886

Ranjith, Y. (2023). 2D and 3D Physics Informed Neural Networks to Model Pollution Spread with Obstructions. In Proceedings of the IEEE/ACM 10th International Conference on Big Data Computing, Applications and Technologies (pp. 1-2). https://doi.org/10.1145/3632366.3632380

Ren, X., Hu, P., Su, H., Zhang, F., & Yu, H. (2024). Physics-informed neural networks for transonic flow around a cylinder with high Reynolds number. Physics of Fluids, 36(3). https://doi.org/10.1063/5.0200384

Roehrl, M. A., Runkler, T. A., Brandtstetter, V., Tokic, M., & Obermayer, S. (2020). Modeling System Dynamics with Physics-Informed Neural Networks Based on Lagrangian Mechanics. IFAC-PapersOnLine, 53(2), 9195–9200. https://doi.org/10.1016/j.ifacol.2020.12.2182

Rosofsky, S. G., Al Majed, H., & Huerta, E. A. (2023). Applications of physics informed neural operators. Machine Learning: Science and Technology, 4(2), 025022. https://doi.org/10.1088/2632-2153/acd168

Saba, A., Gigli, C., Ayoub, A. B., & Psaltis, D. (2022). Physics-informed neural networks for diffraction tomography. Advanced Photonics, 4(06). https://doi.org/10.1117/1.ap.4.6.066001

Sahin, T., von Danwitz, M., & Popp, A. (2024). Solving forward and inverse problems of contact mechanics using physics-informed neural networks. Advanced Modeling and Simulation in Engineering Sciences, 11(1). https://doi.org/10.1186/s40323-024-00265-3

Schiassi, E., D’Ambrosio, A., Drozd, K., Curti, F., & Furfaro, R. (2022). Physics-Informed Neural Networks for Optimal Planar Orbit Transfers. Journal of Spacecraft and Rockets, 59(3), 834–849. https://doi.org/10.2514/1.a35138

Schmid, J. D., Bauerschmidt, P., Gurbuz, C., Eser, M., & Marburg, S. (2024). Physics-informed neural networks for acoustic boundary admittance estimation. Mechanical Systems and Signal Processing, 215, 111405. https://doi.org/10.1016/j.ymssp.2024.111405

Schoder, S. (2025). Physics-Informed Neural Networks for Modal Wave Field Predictions in 3D Room Acoustics. Applied Sciences, 15(2), 939. https://doi.org/10.3390/app15020939

Sedykh, A., Podapaka, M., Sagingalieva, A., Pinto, K., Pflitsch, M., & Melnikov, A. (2024). Hybrid quantum physics-informed neural networks for simulating computational fluid dynamics in complex shapes. Machine Learning: Science and Technology, 5(2), 025045. https://doi.org/10.1088/2632-2153/ad43b2

Seyed-Ahmadi, A., & Wachs, A. (2022). Physics-inspired architecture for neural network modeling of forces and torques in particle-laden flows. Computers & Fluids, 238, 105379. https://doi.org/10.1016/j.compfluid.2022.105379

Shadram, Z., Nguyen, T. M., Sideris, A., & Sirignano, W. A. (2022). Physics-aware neural network flame closure for combustion instability modeling in a single-injector engine. Combustion and Flame, 240, 111973. https://doi.org/10.1016/j.combustflame.2021.111973

Shao, K., Wu, Y., & Jia, S. (2023). An Improved Neural Particle Method for Complex Free Surface Flow Simulation Using Physics-Informed Neural Networks. Mathematics, 11(8), 1805. https://doi.org/10.3390/math11081805

Sharma, P., Chung, W. T., Akoush, B., & Ihme, M. (2023). A Review of Physics-Informed Machine Learning in Fluid Mechanics. Energies, 16(5), 2343. https://doi.org/10.3390/en16052343

Shi, Y., & Beer, M. (2024). Physics-informed neural network classification framework for reliability analysis. Expert Systems with Applications, 258, 125207. https://doi.org/10.1016/j.eswa.2024.125207

Singh, V., Harursampath, D., Dhawan, S., Sahni, M., Saxena, S., & Mallick, R. (2024). Physics-Informed Neural Network for Solving a One-Dimensional Solid Mechanics Problem. Modelling, 5(4), 1532–1549. https://doi.org/10.3390/modelling5040080

Son, S., Lee, H., Jeong, D., Oh, K.-Y., & Ho Sun, K. (2023). A novel physics-informed neural network for modeling electromagnetism of a permanent magnet synchronous motor. Advanced Engineering Informatics, 57, 102035. https://doi.org/10.1016/j.aei.2023.102035

Song, M., Tang, X., Xing, J., Liu, K., Luo, K., & Fan, J. (2024). Physics-informed neural networks coupled with flamelet/progress variable model for solving combustion physics considering detailed reaction mechanism. Physics of Fluids, 36(10). https://doi.org/10.1063/5.0227581

Stachiw, T., Crain, A., & Ricciardi, J. (2022). A physics-based neural network for flight dynamics modelling and simulation. Advanced Modeling and Simulation in Engineering Sciences, 9(1). https://doi.org/10.1186/s40323-022-00227-7

Sultan, S., & Zhang, Z. (2024). A comparative investigation of a time‐dependent mesh method and physics‐informed neural networks to analyze the generalized Kolmogorov–Petrovsky–Piskunov equation. International Journal for Numerical Methods in Fluids, 96(5), 651–669. Portico. https://doi.org/10.1002/fld.5259

Sun, H., Liao, Y., Jiang, H., Li, G., & Cui, J. (2024). Physics-informed neural network for velocity prediction in electromagnetic launching manufacturing. Mechanical Systems and Signal Processing, 220, 111671. https://doi.org/10.1016/j.ymssp.2024.111671

Sun, Y., Sengupta, U., & Juniper, M. (2023). Physics-informed deep learning for simultaneous surrogate modeling and PDE-constrained optimization of an airfoil geometry. Computer Methods in Applied Mechanics and Engineering, 411, 116042. https://doi.org/10.1016/j.cma.2023.116042

Tavares, S. M. O., Ribeiro, J. A., Ribeiro, B. A., & de Castro, P. M. S. T. (2024). Aircraft Structural Design and Life-Cycle Assessment through Digital Twins. Designs, 8(2), 29. https://doi.org/10.3390/designs8020029

Teloli, R. de O., Tittarelli, R., Bigot, M., Coelho, L., Ramasso, E., Moal, P. L., & Ouisse, M. (2025). A physics-informed neural networks framework for model parameter identification of beam-like structures. Mechanical Systems and Signal Processing, 224, 112189. https://doi.org/10.1016/j.ymssp.2024.112189

Ünal, H. S., & Durgun, A. C. (2025). A physics-aware neural network for effective refractive index prediction of photonic waveguides. Optical and Quantum Electronics, 57(1). https://doi.org/10.1007/s11082-024-08009-8

Varey, J., Ruprecht, J. D., Tierney, M., & Sullenberger, R. (2024). Physics-Informed Neural Networks for Satellite State Estimation. In 2024 IEEE Aerospace Conference (pp. 1-8). IEEE. https://doi.org/10.1109/aero58975.2024.10521414

Wang, B., Guo, Z., Liu, J., Wang, Y., & Xiong, F. (2024). Geophysical Frequency Domain Electromagnetic Field Simulation Using Physics-Informed Neural Network. Mathematics, 12(23), 3873. https://doi.org/10.3390/math12233873

Wang, Y.-C., Xing, J.-K., Luo, K., Wang, H.-O., & Fan, J.-R. (2022). Solving combustion chemical differential equations via physics-informed neural network. Journal of Zhejiang University (Engineering Science), 56(10), 2084–2092. https://doi.org/10.3785/j.issn.1008-973X.2022.10.020

Wassing, S., Langer, S., & Bekemeyer, P. (2024). Physics-informed neural networks for parametric compressible Euler equations. Computers & Fluids, 270, 106164. https://doi.org/10.1016/j.compfluid.2023.106164

Wassing, S., Langer, S., & Bekemeyer, P. (2025). Physics-Informed Neural Networks for Transonic Flows around an Airfoil. arXiv:2408.17364v3. https://doi.org/10.48550/arXiv.2408.17364

Xu, C., Cao, B. T., Yuan, Y., & Meschke, G. (2023). Transfer learning based physics-informed neural networks for solving inverse problems in engineering structures under different loading scenarios. Computer Methods in Applied Mechanics and Engineering, 405, 115852. https://doi.org/10.1016/j.cma.2022.115852

Yan, C. A., Vescovini, R., & Dozio, L. (2022). A framework based on physics-informed neural networks and extreme learning for the analysis of composite structures. Computers & Structures, 265, 106761. https://doi.org/10.1016/j.compstruc.2022.106761

Yan, H., Wang, Y., Yan, Y., & Cui, J. (2023). Physics-Informed Neural Network for Flow Prediction Based on Flow Visualization in Bridge Engineering. Atmosphere, 14(4), 759. https://doi.org/10.3390/atmos14040759

Yan, X., Lin, J., Wang, S., Zhang, Z., Liu, P., Sun, S., Yao, J., & Zhang, K. (2024). Physics-informed neural network simulation of two-phase flow in heterogeneous and fractured porous media. Advances in Water Resources, 189, 104731. https://doi.org/10.1016/j.advwatres.2024.104731

Yang, D., Jin, A., & Li, Y. (2024). A Novel Physics-Guided Neural Network for Predicting Fatigue Life of Materials. Applied Sciences, 14(6), 2502. https://doi.org/10.3390/app14062502

Yang, H., Ren, F., Song, Y.-J., Yu, H.-S., & Chen, X. (2024). Physics-informed neural network solution for thermo-elastic cavity expansion problem. Geomechanics and Geoengineering, 1–11. https://doi.org/10.1080/17486025.2024.2414849

Yang, L., Meng, X., & Karniadakis, G. E. (2021). B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data. Journal of Computational Physics, 425, 109913. https://doi.org/10.1016/j.jcp.2020.109913

Yang, Z., Xu, Y., Jing, J., Fu, X., Wang, B., Ren, H., Zhang, M., & Sun, T. (2023). Investigation of Physics-Informed Neural Networks to Reconstruct a Flow Field with High Resolution. Journal of Marine Science and Engineering, 11(11), 2045. https://doi.org/10.3390/jmse11112045

Yazdani, S., & Tahani, M. (2024). Data-driven discovery of turbulent flow equations using physics-informed neural networks. Physics of Fluids, 36(3). https://doi.org/10.1063/5.0190138

Yokota, K., Kurahashi, T., & Abe, M. (2024). Physics-informed neural network for acoustic resonance analysis in a one-dimensional acoustic tube. The Journal of the Acoustical Society of America, 156(1), 30–43. https://doi.org/10.1121/10.0026459

Yucesan, Y. A., & Viana, F. A. C. (2023). A Physics-informed Neural Network for Wind Turbine Main Bearing Fatigue. International Journal of Prognostics and Health Management, 11(1). https://doi.org/10.36001/ijphm.2020.v11i1.2594

Zhang, C., Wen, C.-Y., Jia, Y., Juan, Y.-H., Lee, Y.-T., Chen, Z., Yang, A.-S., & Li, Z. (2024). Enhancing the accuracy of physics-informed neural networks for indoor airflow simulation with experimental data and Reynolds-averaged Navier–Stokes turbulence model. Physics of Fluids, 36(6). https://doi.org/10.1063/5.0216394

Zhang, E., Dao, M., Karniadakis, G. E., & Suresh, S. (2022). Analyses of internal structures and defects in materials using physics-informed neural networks. Science Advances, 8(7). https://doi.org/10.1126/sciadv.abk0644

Zhang, J., Braga-Neto, U., & Gildin, E. (2024). Physics-Informed Neural Networks for Multiphase Flow in Porous Media Considering Dual Shocks and Interphase Solubility. Energy & Fuels, 38(18), 17781–17795. https://doi.org/10.1021/acs.energyfuels.4c02888

Zhang, R., Xu, N., Zhang, K., Wang, L., & Lu, G. (2023). A Parametric Physics-Informed Deep Learning Method for Probabilistic Design of Thermal Protection Systems. Energies, 16(9), 3820. https://doi.org/10.3390/en16093820

Zhang, S., Zhang, C., & Wang, B. (2024). CRK-PINN: A physics-informed neural network for solving combustion reaction kinetics ordinary differential equations. Combustion and Flame, 269, 113647. https://doi.org/10.1016/j.combustflame.2024.113647

Zhao, C., Zhang, F., Lou, W., Wang, X., & Yang, J. (2024). A comprehensive review of advances in physics-informed neural networks and their applications in complex fluid dynamics. Physics of Fluids, 36(10). https://doi.org/10.1063/5.0226562

Zhao, X., Gong, Z., Zhang, Y., Yao, W., & Chen, X. (2023). Physics-informed convolutional neural networks for temperature field prediction of heat source layout without labeled data. Engineering Applications of Artificial Intelligence, 117, 105516. https://doi.org/10.1016/j.engappai.2022.105516

Zhou, W., Miwa, S., & Okamoto, K. (2024). Physics-informed neural networks for two-phase flow simulations: An integrated approach with advanced interface tracking methods. In Proceedings of the 38th National Conference of the Japanese Society for Artificial Intelligence (pp. 4Q1IS2c02-4Q1IS2c02). The Japanese Society for Artificial Intelligence. https://doi.org/10.11517/pjsai.JSAI2024.0_4Q1IS2c02

Zhu, D., Peng, J., & Ding, C. (2024). A Neural Network with Physical Mechanism for Predicting Airport Aviation Noise. Aerospace, 11(9), 747. https://doi.org/10.3390/aerospace11090747

Zhu, X., Hu, X., & Sun, P. (2023). Physics-Informed Neural Networks for Solving Dynamic Two-Phase Interface Problems. SIAM Journal on Scientific Computing, 45(6), A2912–A2944. https://doi.org/10.1137/22m1517081

Zhu, Y., Chen, W., Deng, J., & Bian, X. (2025). Physics-informed neural networks for hidden boundary detection and flow field reconstruction. arXiv preprint arXiv:2503.24074. https://doi.org/10.48550/arXiv.2503.24074

Zucker, S., Batenkov, D., & Rozenhaimer, M. S. (2025). Physics-informed neural networks for modeling atmospheric radiative transfer. Journal of Quantitative Spectroscopy and Radiative Transfer, 331, 109253. https://doi.org/10.1016/j.jqsrt.2024.109253

Downloads

Published

2025-05-28

How to Cite

Tkachov, Y., & Murashko, O. (2025). Physics-Informed Neural Networks in Aerospace: A Structured Taxonomy with Literature Review. Challenges and Issues of Modern Science. https://cims.fti.dp.ua/j/article/view/313

Share