Forthcoming

Structure and physical properties of the rapidly cooled amorphous alloy FeCo0,854Nb0,146NiB0,7Si0,3

Authors

Keywords:

multicomponent high-entropy alloy, metallic glass, amorphous film, relative electrical resistivity, soft magnetic properties, microhardness

Abstract

Purpose. The study aims to develop and characterize a new nanostructured FeCo0,854Nb0,146NiB0,7Si0,3 high-entropy metallic glass with enhanced soft magnetic and mechanical properties. The research seeks to explore the interplay between the alloy’s amorphous structure and its functional properties to advance the understanding of high-entropy metallic glasses. Design / Method / Approach. The amorphous films of the FeCo0,854Nb0,146NiB0,7Si0,3 alloy was synthesized using splat-quenching technique. The cooling rate, estimated based on the film thickness, was ~106 K/s. Structural properties were analyzed via X-ray diffraction (XRD), differential thermal analysis (DTA), and electrical resistivity measurements. Magnetic properties were assessed using a B–H curve tracer and vibrating sample magnetometer, while microhardness was measured with a PMT-3 tester. Findings. The alloy exhibits a fully glassy structure with a crystallite size of ~3 nm, low coercivity (40 A/m), high saturation magnetization (74 A·m2/kg), and microhardness ≥ 8000 MPa, indicating decent soft magnetic and mechanical properties. Theoretical Implications. The research provides significant insights into the role of atomic-size differences, configurational entropy, and thermodynamic parameters in stabilizing the glassy phase in high-entropy alloys. It advances the theoretical framework for designing high-entropy amorphous materials. Practical Implications. The characteristics of the material make it promising for use in electronic devices and mechanical engineering parts. Originality / Value. This study provides a comprehensive analysis of the high-entropy metallic glass FeCo0,854Nb0,146NiB0,7Si0,3, offering new insights of its magnetic and mechanical properties through advanced characterization techniques. Research Limitations / Future Research. Further studies are needed to investigate the long-term stability of the fabricated amorphous alloy. Article Type. Applied Research.

PURL: https://purl.org/cims/4.284

Downloads

Download data is not yet available.

References

Akimov, S. V., Duda, V. M., Dudnik, E. F., Kushnerev, A. I., & Tomchakov, A. N. (2006). Secondary ferroic properties of partial mixed ferroelectric ferroelastics. Physics of the Solid State, 48(6), 1073–1076. https://doi.org/10.1134/S1063783406060175

Altomare, A., Corriero, N., Cuocci, C., Falcicchio, A., Moliterni, A., & Rizzi, R. (2017). Main features of QUALX2.0 software for qualitative phase analysis. Powder Diffraction, 32(S1), S129–S134. https://doi.org/10.1017/S0885715617000240

Bashev, V. F., Kushnerov, O. I., & Ryabtsev, S. I. (2023). Structure and properties of CoCrFeNiMnBe high-entropy alloy films obtained by melt quenching. Molecular Crystals and Liquid Crystals, 765(1), 145–153. https://doi.org/10.1080/15421406.2023.2215125

Biswas, K., Gurao, N. P., Maiti, T., & Mishra, R. S. (2022). High Entropy Materials. Processing, Properties, and Applications. Springer Nature Singapore. https://doi.org/10.1007/978-981-19-3919-8

Brechtl, J., & Liaw, P. K. (2021). High-Entropy Materials: Theory, Experiments, and Applications. Springer International Publishing. https://doi.org/10.1007/978-3-030-77641-1

Cheng, H., Luo, H., Fan, C., Wang, X., & Li, C. (2025). Accelerated design of high-entropy alloy coatings for high corrosion resistance via machine learning. Surface and Coatings Technology, 502, 131978. https://doi.org/10.1016/j.surfcoat.2025.131978

Dudnik, E. F., Duda, V. M., & Kushnerov, A. I. (2001). Second-order ferroic properties of a Pb5Ge3O11 uniaxial ferroelectric. Physics of the Solid State, 43(12), 2280–2283. https://doi.org/10.1134/1.1427957

Dufanets, M., Sklyarchuk, V., Plevachuk, Y., Kulyk, Y., & Mudry, S. (2020). The Structural and Thermodynamic Analysis of Phase Formation Processes in Equiatomic AlCoCuFeNiCr High-Entropy Alloys. Journal of Materials Engineering and Performance, 29(11), 7321–7327. https://doi.org/10.1007/s11665-020-05250-6

Firstov, G. S., Koval, Y. M., Filatova, V. S., Odnosum, V. V., Gerstein, G., & Maier, H. J. (2023). Development of high-entropy shape-memory alloys: structure and properties. Progress in Physics of Metals, 24(4), 819–837. https://doi.org/10.15407/UFM.24.04.819

Gale, W. F., & Totemeier, T. C. (Eds.). (2004). Smithells metals reference book (8th ed.). Elsevier Butterworth-Heinemann. https://doi.org/10.1016/B978-075067509-3/50003-8

Girzhon, V., Yemelianchenko, V., & Smolyakov, O. (2023). High entropy coating from AlCoCrCuFeNi alloy, obtained by laser alloying. Acta Metallurgica Slovaca, 29(1), 44–49. https://doi.org/10.36547/ams.29.1.1710

Gorban, V. F., Firstov, S. O., Krapivka, M. O., Samelyuk, A. V., & Kurylenko, D. V. (2022). Influence of Various Factors on the Properties of Solid-Soluble High-Entropy Alloys Based on BCC and FCC Phases. Materials Science, 58(1), 135–140. https://doi.org/10.1007/S11003-022-00641-7

Gorban, V. F., Firstov, S. A., & Krapivka, M. O. (2023). The Influence of Different Factors on Physicomechanical Properties of High Entropy Alloys with fcc Lattice. Materials Science, 59(2), 145–151. https://doi.org/10.1007/S11003-024-00755-0

Hobhaydar, A., Wang, X., Wang, Y., Li, H., Van Tran, N., & Zhu, H. (2023). Effect of tungsten doping on the irradiation resistance of FeCrV-based refractory medium entropy alloy for potential nuclear applications. Journal of Alloys and Compounds, 966, 171635. https://doi.org/10.1016/j.jallcom.2023.171635

Karpov, S. (2024). Application of high-entropy alloys in hydrogen storage technology. Problems of Atomic Science and Technology, 2024(2), 48–61. https://doi.org/10.46813/2024-150-048

Kaya, F., Aliakbarlu, S., Dizdar, K. C., Selimoğlu, G. İ., & Derin, B. (2025). Thermochemical Modeling-Assisted Synthesis of AlxCoCrFeNiMn (0.5 ≤ x ≤ 3) High-Entropy Alloys via Combustion Method for Soft Magnetic Applications. Mining, Metallurgy and Exploration, 1–13. https://doi.org/10.1007/S42461-025-01204-5

Krapivka, N. A., Firstov, S. A., Karpets, M. V, Myslivchenko, A. N., & Gorban’, V. F. (2015). Features of phase and structure formation in high-entropy alloys of the AlCrFeCoNiCu x system (x = 0, 0.5, 1.0, 2.0, 3.0). The Physics of Metals and Metallography, 116(5), 467–474. https://doi.org/10.1134/S0031918X15030084

Kushnerov, O. I., Bashev, V. F., & Ryabtsev, S. I. (2021). Structure and Properties of Nanostructured Metallic Glass of the Fe–B–Co–Nb–Ni–Si High-Entropy Alloy System. Springer Proceedings in Physics, 246, 557–567. https://doi.org/10.1007/978-3-030-51905-6_38

Kushnerov, O. I., Ryabtsev, S. I., & Bashev, V. F. (2023). Metastable states and physical properties of Co-Cr-Fe-Mn-Ni high-entropy alloy thin films. Molecular Crystals and Liquid Crystals, 750(1), 135–143. https://doi.org/10.1080/15421406.2022.2073043

Li, Y., Zhang, W., & Qi, T. (2017). New soft magnetic Fe25Co25Ni25(P, C, B)25 high entropy bulk metallic glasses with large supercooled liquid region. Journal of Alloys and Compounds, 693, 25–31. https://doi.org/10.1016/j.jallcom.2016.09.144

Lin, M., Xiao, X., Xu, C.-H., Lu, W., Zhang, Y., & Liao, W. (2025). A nanostructured TiZrNbTaMo high-entropy alloy thin film with exceptional corrosion properties for biomedical application. Applied Surface Science, 684, 161859. https://doi.org/10.1016/J.APSUSC.2024.161859

Liu, X., Liu, J., Zhou, C., Jiang, Z., Dong, W., An, X., Wei, W., Wang, D., Guan, S., & Feng, S. (2025). Achieving 2.1 GPa ultrahigh strength in a light-weight eutectic high-entropy alloy with dual heterogeneous structures. Materials Characterization, 222, 114812. https://doi.org/10.1016/J.MATCHAR.2025.114812

Miracle, D. B., & Senkov, O. N. (2017). A critical review of high entropy alloys and related concepts. Acta Materialia, 122, 448–511. https://doi.org/10.1016/j.actamat.2016.08.081

Panahi, S. L., Fornell, J., Popescu, C., Pineda, E., Sort, J., & Bruna, P. (2022). Structure, mechanical properties and nanocrystallization of (FeCoCrNi)-(B,Si) high-entropy metallic glasses. Intermetallics, 141, 107432. https://doi.org/10.1016/j.intermet.2021.107432

Park, H., Son, S., Ahn, S. Y., Ha, H., Kim, R. E., Lee, J. H., Joo, H. M., Kim, J. G., & Kim, H. S. (2025). Hyperadaptor; Temperature-insensitive tensile properties of Ni-based high-entropy alloy a wide temperature range. Materials Research Letters, 13(4), 348–356. https://doi.org/10.1080/21663831.2025.2457346

Poletti, M. G., & Battezzati, L. (2014). Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems. Acta Materialia, 75, 297–306. https://doi.org/10.1016/j.actamat.2014.04.033

Polonskyy, V. A., Kushnerov, O. I., Bashev, V. F., & Ryabtsev, S. I. (2024). The influence of the cooling rate on the structure and corrosion properties of the multicomponent high-entropy alloy CoCrFeMnNiBe. Physics and Chemistry of Solid State, 25(3), 506–512. https://doi.org/10.15330/pcss.25.3.506-512

Singh, A., Kumari, P., Sahoo, S. K., & Shahi, R. R. (2024). Studies on hydrogen storage properties of TiVFeNi, (TiVFeNi)95Zr5 and (TiVFeNi)90Zr10 high entropy alloys. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2024.09.064

Takeuchi, A., & Inoue, A. (2005). Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element. Materials Transactions, 46(12), 2817–2829. https://doi.org/10.2320/matertrans.46.2817

Tkatch, V. I., Denisenko, S. N., & Beloshov, O. N. (1997). Direct measurements of the cooling rates in the single roller rapid solidification technique. Acta Materialia, 45(7), 2821–2826. https://doi.org/10.1016/S1359-6454(96)00377-1

Tkatch, V. I., Grishin, A. M., & Maksimov, V. V. (2009). Estimation of the heat transfer coefficient in melt spinning process. Journal of Physics: Conference Series, 144, 012104. https://doi.org/10.1088/1742-6596/144/1/012104

Tkatch, V. I., Limanovskii, A. I., Denisenko, S. N., & Rassolov, S. G. (2002). The effect of the melt-spinning processing parameters on the rate of cooling. Materials Science and Engineering: A, 323(1–2), 91–96. https://doi.org/10.1016/S0921-5093(01)01346-6

Xiao, X., Zhang, J. W., Feng, C. S., Yu, H., & Liao, W. B. (2025). Design of low-activation refractory high-entropy alloys with improved plasticity. Applied Physics Letters, 126(12). https://doi.org/10.1063/5.0258818

Xu, Y., Li, Y., Zhu, Z., & Zhang, W. (2018). Formation and properties of Fe25Co25Ni25(P, C, B, Si)25 high-entropy bulk metallic glasses. Journal of Non-Crystalline Solids, 487, 60–64. https://doi.org/10.1016/j.jnoncrysol.2018.02.021

Wang, H., Jiang, B., He, H., Fu, G., Sun, B., Liu, X., Zhang, S., Gao, Z., Meng, X., & Yi, X. (2025). Microstructural features and functional properties of NiCuTiZrAl high entropy shape memory alloys. Journal of Materials Research and Technology, 36, 1875–1890. https://doi.org/10.1016/j.jmrt.2025.03.243

Zatsarna, O., Kotrechko, S., Filatov, O., Bondarchuk, V., Firstov, G., & Dubinko, V. (2024). Phenomenon of ignition and explosion of high-entropy alloys of systems Ti-Zr-Hf-Ni-Cu, Ti-Zr-Hf-Ni-Cu-Co under quasi-static compression. Frattura Ed Integrità Strutturale, 18(68), 410–421. https://doi.org/10.3221/IGF-ESIS.68.27

Zhou, Y., Xiang, H., & Dai, F.-Z. (2023). High‐Entropy Materials (1st ed.). Wiley. https://doi.org/10.1002/9783527837205

Published

2025-05-19

How to Cite

Kushnerov, O., Bashev, V., & Ryabtsev, S. (2025). Structure and physical properties of the rapidly cooled amorphous alloy FeCo0,854Nb0,146NiB0,7Si0,3. Challenges and Issues of Modern Science. https://cims.fti.dp.ua/j/article/view/284

Share