Use of thermal energy for blowing fuel tanks of rocket engines

Authors

Keywords:

thermal energy, pressurization, fuel tanks, rocket engines

Abstract

The use of thermal energy for pressurizing fuel tanks in rocket propulsion systems is a crucial topic in the field of space technology. It encompasses various aspects of thermodynamics, materials engineering, and fluid and gas mechanics. This study examines the fundamental principles and methods of using thermal energy to pressurize fuel tanks, and proposes practical approaches. The research pertains to the field of rocket and space technology, specifically for pre-launch pressurization (PLP) of liquid rocket engines (LRE) in launch vehicles (LV). The goal of the research is to develop an algorithm for preliminary calculation of the PLP system by introducing thermal energy into the free volumes of fuel tanks. Methods of thermodynamics, laws of real gas, and the first law of thermodynamics regarding non-stationary processes are utilized. The processes occurring in the free volumes of the tanks during the implementation of the new PLP method are identified. These include free-convective thermal processes between the gas in the tank and the boundary surfaces. A method for the estimative calculations of the considered system is proposed, demonstrating the feasibility and, in certain cases, the advisability of this approach. A technical solution to the problem of increasing the gas pressure in the free volume of the tank to the required level, achieved by increasing the average mass temperature of the gas in this volume, is considered. This solution allows for effective control of gas pressure without the use of additional mechanical devices. The use of thermal energy is an important and promising area of research and development. It requires deep knowledge in various scientific and engineering disciplines, as well as innovative approaches to solving existing challenges. Further development will contribute to enhancing the efficiency and reliability of rocket systems, which, in turn, will open new opportunities for space exploration.

Downloads

Download data is not yet available.

References

Dreus, A., Yemets, V., Dron, M., Malaychuk, V., & Dubovik, L. (2023). Передумови створення надлегких ракет-носіїв з полімерними корпусами. Системне проектування та аналіз характеристик аерокосмічної техніки, 32(1), 25-40. https://doi.org/10.15421/472303

Мітіков, Ю., & Седченко, М. (2023). Критичний аналіз гелі-євих газобалонних систем наддування паливних баків ракетних двигунів. Виклики та проблеми сучасної науки, 1, 117-125. https://cims.fti.dp.ua/j/article/view/23

Беляев, Н. М. (1976). Системы наддува топливных баков ракет. М.: Машиностроение.

Дегтярев, А. В., Кушнарев, А. П., Попов, Д. А., Полуян, Н. В., Аксененко, А. В., & Баранов, Е. Ю. (2014). Ракета космического назначения сверхмалого класса. Космическая техника. Ракетное вооружение, (1), 14-20.

Мітіков, Ю. А., & Татарінов, К. А. (2017). Аналіз шляхів удосконалення систем наддуву паливних баків двигунних установок ракет-носіїв. Вісник Дніпропетровського університету. Серія: Ракетно-космічна техніка, (25, віп. 20), 50-56.

Спосіб наддування паливного бака рідинної рушійної установки ракети-носія (Патент України № а202304842). (2023). ДНУ ім. Олеся Гончара.

Naoumov, V. I., Krioukov, V. G., Abdullin, A. L., & Demin, A. V. (2019). Chemical kinetics in combustion and reactive flows: modeling tools and applications. Cambridge University Press.

Published

2024-06-14

Issue

Section

Engines, Energy and Thermotechnics

How to Cite

Mitikov, Y., Sedchenko, M., & Krupkin, Y. (2024). Use of thermal energy for blowing fuel tanks of rocket engines. Challenges and Issues of Modern Science, 2, 78-82. https://cims.fti.dp.ua/j/article/view/146

Share