Forthcoming

Preliminary Design Evaluation of Solid-Propellant Rocket Engines

Authors

DOI:

https://doi.org/10.15421/cims.4.279

Keywords:

solid propellant rocket engines, automated design evaluation, preliminary design stage, parametric optimization, analytical performance modeling

Abstract

Purpose. This article raises the issue of the necessity to develop methods for automated design evaluation of solid-propellant rocket engines at the early stages of missile development. Design / Method / Approach. The study is based on analytical models and empirical data derived from the development of numerous SREs by design bureaus, particularly Yuzhnoye State Design Office. It uses parametric analysis and optimization techniques, supported by statistical correction and verification against real-world motor data Findings. The article identifies critical parameters that influence solid-propellant rocket engines (SRE) efficiency and offers a computational framework for optimizing these parameters. The methodology significantly reduces the time required for preliminary assessments and allows for automated exploration of design alternatives. Theoretical Implications. This study contributes to the theoretical understanding of SRE performance modeling and optimization during conceptual design. It outlines how analytical dependencies can be constructed and refined based on engineering theory and empirical calibration. Practical Implications. The developed approach enables engineers to quickly generate and evaluate multiple engine design scenarios, improving the quality and speed of early decision-making in missile system development. Originality / Value. The work offers a practical and validated methodology for automated design evaluation of SREs, filling a gap in the early-stage engineering workflow. It is valuable to aerospace engineers, defense researchers, and developers of propulsion systems. Research Limitations / Future Research. The methodology focuses on typical SRE configurations and assumes statistical consistency across historical data. Future research may expand the models to incorporate novel materials, 3D-printed components, and adaptive control systems. Article Type. Methodological paper.

Downloads

Download data is not yet available.

References

AbdelGawad, A. R., & Guozhu, L. (2022, May). A numerical simulation study for a dual thrust solid propellant rocket motor nozzle. In Journal of Physics: Conference Series (Vol. 2235, No. 1, p. 012010). IOP Publishing. https://doi.org/10.1088/1742-6596/2235/1/012010

Almayas, A., Yaakob, M. S., Aziz, F. A., Yidris, N., & Ahmad, K. A. (2021). CFD application for solid propellant rocket simulation: A review. CFD Letters, 13(1), 84-95. https://doi.org/10.37934/cfdl.13.1.8495

Bondarenko, M., & Habrinets, V. (2023). Thrust vector control of solid-propellant engines for operational-tactical missiles [In Ukrainian]. Challenges and Issues of Modern Science, 1, 68-73. https://cims.fti.dp.ua/j/article/view/14

Bondarenko, M., Habrinets, V., & Vorobei, M. (2024). Evolution of Multiple Launch Rocket Systems from Early Rockets to HIMARS and Beyond. Challenges and Issues of Modern Science, 3, 23-34. https://cims.fti.dp.ua/j/article/view/241

Bondarenko, M., Habrinets, V., & Vorobei, M. (2025). Open-source analysis of the potential configuration and kinetic performance of the Oreshnik ballistic missile. Challenges and Issues of Modern Science, 4(1), 36-42. https://doi.org/10.15421/cims.4.306

Cang, Y., & Wang, L. (2024). Understanding AP/HTPB composite propellant combustion from new perspectives. Combustion and Flame, 259, 113108. https://doi.org/10.1016/j.combustflame.2023.113108

Chen, H., Wu, X., Chu, K., Wang, H., Ba, Y., & Liu, P. J. (2025). Combustion Efficiency Characteristics of Single Aluminum Particle in SRM via CFD-DEM. SSRN. https://dx.doi.org/10.2139/ssrn.5450317

Deyou, W. A. N. G., Shipeng, L. I., Ge, J. I. N., Ruyao, W. A. N. G., Dian, G. U. A. N., & Ningfei, W. A. N. G. (2024). Numerical study on ignition start-up process of an underwater solid rocket motor across a wide depth range. Chinese Journal of Aeronautics, 37(10), 136-157. https://doi.org/10.1016/j.cja.2024.06.019

Ellis, R. A., & Keller Jr, R. B. (1975). Solid rocket motor nozzles (No. NASA-SP-8115). NTRS - NASA Technical Reports Server. https://ntrs.nasa.gov/citations/19760013126

Galletly, M., & Verstraete, D. (2025). Design optimisation and comparison of propulsion systems for sounding rockets. Acta Astronautica. https://doi.org/10.1016/j.actaastro.2025.06.036

Glazkov, V. A., Enotov, V. G., Kozak, L. R., & Fomenko, V. S. (2018). The solid–propellant motors with regulated thrust [In Russian]. Space Technology. Missile Armament, 115(1), 46-52. https://doi.org/10.33136/stma2018.01.046

Hashish, A. (2018). Design of solid motor for predefined performance criteria (Master’s thesis, Military Technical College). ResearchGate. https://doi.org/10.13140/RG.2.2.30254.77125

Kamm, Y., & Gany, A. (2008). Solid rocket motor optimization. In 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (p. 4695). https://doi.org/10.2514/6.2008-4695

Kirichenko, A. S., Kushnir, B. I., & Enotov, V. G. (2016). Solid Rocket Motors Developed by DO-5 [In Russian]. Space Technology. Missile Armament, 111(1), 4-12. https://journal.yuzhnoye.com/content_2016_1/annot_1_1_2016-en

Kirichenko, A. S., Kushnir, B. I., Malyi, L. P., Ushkin, N. P., & Oglykh, V. V. (2014). Increasing the efficiency of solid-propellant rocket motors through the development and implementation of new design and engineering solutions at Yuzhnoye SDO [In Russian]. Space Technology. Missile Armament, 106(1), 89-96. http://nbuv.gov.ua/UJRN/Ktrv_2014_1_17

Kositsyna, O., Varlan, K., Dron, M., & Kulyk, O. (2021). Determining energetic characteristics and selecting environmentally friendly components for solid rocket propellants at the early stages of design. Eastern-European Journal of Enterprise Technologies, 6(6 (114)), 6–14. https://doi.org/10.15587/1729-4061.2021.247233

Li, Z., Liu, J., Ye, Z., Zhang, W., & Sun, L. (2025). Heat and mass transfer mechanism model of AP/HTPB propellant based on micro-CT in the ignition stage of a solid rocket motor. Applied Thermal Engineering, 127654. https://doi.org/10.1016/j.applthermaleng.2025.127654

Miller, W. H. (1971). Solid rocket motor performance analysis and prediction (Vol. 8039). National Aeronautics and Space Administration. https://books.google.com.ua/books?id=xgTlAAAAMAAJ

Mishra, A. K., Jadhav, S., & Akshay, M. (2022). Theoretical Aspects on Design and Performance Characteristics of solid rocket motor. International Journal of All Research Education and Scientific Methods, 10(2), 894-898. https://tinyurl.com/mtahpk8p

Mochonov, R. A., Sotnichenko, A. V., Ivanytskyi, H. M., & Salo, M. P. (2020). Study of the temperature and force effects of supersonic jets of the space rockets on the gas duct of the launch complex during the water supply system operation. Space Science and Technology, 26(3). https://doi.org/10.15407/knit2020.03.003

Oglykh, V. V., Kosenko, M. G., Dotsenko, V. M., Vakhromov, V. A., Kublik, V. F., & Mamontov, V. G. (2010). Specific features of design and experimental testing of small-sized auxiliary SRMs for space rockets [In Russian]. Aerospace technic and technology, 77(10), 83-88. http://nbuv.gov.ua/UJRN/aktit_2010_10_21

Oyedeko, K. F. K., & Egwenu, S. O. (2021). Modelling of the formulated solid rocket propellant characteristics. Glob J Eng Technol Adv, 6(2), 061-73. https://doi.org/10.30574/gjeta.2021.6.2.0017

Rashkovskiy, S. A., & Yakush, S. E. (2020). Numerical simulation of low-melting temperature solid fuel regression in hybrid rocket engines. Acta Astronautica, 176, 710-716. https://doi.org/10.1016/j.actaastro.2020.05.002

Rohini, D., Sasikumar, C., Samiyappan, P., Dakshinamurthy, B., & Koppula, N. (2022). Design & analysis of solid rocket using open rocket software. Materials Today: Proceedings, 64, 425-430. https://doi.org/10.1016/j.matpr.2022.04.787

Senkin, V. S., & Syutkina-Doronina, S. V. (2019). On the choice of methods used in the optimization of rocket design parameters and control programs [In Russian]. Technical Mechanics, 2019(1), 38–52. https://doi.org/10.15407/itm2019.01.038

Sforzini, R. H. (1972). Design and performance analysis of solid-propellant rocket motors using a simplified computer program (No. NASA-CR-129025). https://ntrs.nasa.gov/citations/19740012324

Teng, J., Wu, Z., Lu, L., & Li, Y. (2025). Rapid prediction of solid rocket ignition transient process using artificial neural networks. Thermal Science, 29(1 Part A), 251-265. https://doi.org/10.2298/TSCI240416176T

Terzic, J., Zecevic, B., Baskarad, M., Catovic, A., & Serdarevic-Kadic, S. (2011). Prediction of internal ballistic parameters of solid propellant rocket motors. Problemy Mechatroniki: uzbrojenie, lotnictwo, inżynieria bezpieczeństwa, 2, 7-26. https://tinyurl.com/mr3y8ycb

Tian, H., He, L., Yu, R., Zhao, S., Wang, P., Cai, G., & Zhang, Y. (2021). Transient investigation of nozzle erosion in a long-time working hybrid rocket motor. Aerospace Science and Technology, 118, 106978. https://doi.org/10.1016/j.ast.2021.106978

Ushkin, N. P. (2016). Method of Design Evaluation of SRM Lifetime and Ensuring its Long-Term Operation [In Russian]. Space Technology. Missile Armament, 111(1), 110-116. https://journal.yuzhnoye.com/content_2016_1/annot_18_1_2016-en

Ushkin, N. P., Moroz, V. G., & Tikhaya, M. V. (2016). Methodology of design evaluation of main SRM flowrate-thrust characteristics after stage separation [In Russian]. Space Technology. Missile Armament, 111(1), 68–75. https://journal.yuzhnoye.com/content_2016_1/annot_11_1_2016-en

Wang, D., Cao, D., Zhou, Z., & Liang, R. (2025). Numerical simulation of fluid–structure interaction for solid rocket engine nozzle ablation. Advances in Aerodynamics, 7(1), 2. https://doi.org/10.1186/s42774-024-00192-2

Wentao, L. I., Yunqin, H. E., & Wenbo, L. I. (2024). 3D grain reverse design and shape optimization for solid rocket motor. Acta Aeronautica et Astronautica Sinica, 45(11). https://hkxb.buaa.edu.cn/EN/Y2024/V45/I11/529089

Zhang, Y., Sun, Z., Hu, Y., Zhu, Y., Xia, X., Qu, H., & Tian, B. (2025). Numerical Simulation of the Gas Flow of Combustion Products from Ignition in a Solid Rocket Motor Under Conditions of Propellant Creep. Aerospace, 12(2), 153. https://doi.org/10.3390/aerospace12020153

Zosimovych, N. (2021). Sounding rocket preliminary design. European Journal of Engineering and Technology Research, 6(2), 136-141. https://doi.org/10.24018/ejeng.2021.6.2.2368

Downloads

Published

2025-10-15

How to Cite

Bondarenko, M., Habrinets, V., & Vorobei, M. (2025). Preliminary Design Evaluation of Solid-Propellant Rocket Engines. Challenges and Issues of Modern Science, 4(2), 279. https://doi.org/10.15421/cims.4.279

Share

Plaudit

Most read articles by the same author(s)